The three-dimensional(3D)cell culture system has garnered significant attention in recent years as a means of studying cell behavior and tissue development,as opposed to traditional two-dimensional cultures.These syst...The three-dimensional(3D)cell culture system has garnered significant attention in recent years as a means of studying cell behavior and tissue development,as opposed to traditional two-dimensional cultures.These systems can induce specific cell reactions,promote specific tissue functions,and serve as valuable tools for research in tissue engineering,regenerative medicine,and drug discovery.This paper discusses current developments in the field of three-dimensional cell culture and the potential applications of 3D type 1 collagen gels to enhance the growth and maturation of dendritic cells.展开更多
Collagen protein is an ideal scaffold material for the transplantation of neural stem cells. In this study rat neural stern cells were seeded into a three-dimensional collagen gel scaffold, with suspension cultured ne...Collagen protein is an ideal scaffold material for the transplantation of neural stem cells. In this study rat neural stern cells were seeded into a three-dimensional collagen gel scaffold, with suspension cultured neural stem cells being used as a control group. Neural stem cells, which were cultured in medium containing epidermal growth factor and basic fibroblast growth factor, actively expanded and formed neurospheres in both culture groups. In serum-free medium conditions, the processes extended from neurospheres in the collagen gel group were much longer than those in the suspension culture group. Immunofluorescence staining showed that neurespheres cultured in collagen gels were stained positive for nestin and differentiated cells were stained positive for the neuronal marker βIII-tubulin, the astrocytic marker glial fibrillary acidic protein and the oligodendrocytic marker 2',3'-cyclic nucleotide 3'-phosphodiesterase. Compared with neurospheres cultured in suspension, the differentiation potential of neural stem cells cultured in collagen gels increased, with the formation of neurons at an early stage. Our results show that the three-dimensional collagen gel culture system is superior to suspension culture in the proliferation, differentiation and process outgrowth of neural stem cells.展开更多
Objective:To exploit- the effects of gentiana scabra bage on the expression of hepatic collagen proteins in Paragonimus skrjabini rats with liver fibrosis.Methods:Immunohistochemical technique was used to observe the ...Objective:To exploit- the effects of gentiana scabra bage on the expression of hepatic collagen proteins in Paragonimus skrjabini rats with liver fibrosis.Methods:Immunohistochemical technique was used to observe the changes of content of hepatic type Ⅰ,Ⅲ collagen proteins in Paragonimus skrjabini rats with Liver fibrosis before and after the gentiana scabra bage treatmeat.Results:Comparing with the model group,changes of hepatic tvpe Ⅰ and type Ⅲ collagen proteins in gentiana scabra bage treated group were significantly weakened.Conclusions:Gentiana scabra bage treatment can reduce the content of hepatic type Ⅲ and type Ⅰ collagen protein significantly in Paragonimus skrjabini rats with liver fibrosis,thereby,playing the role against hepatic fibrosis.展开更多
To study the effects of Icariin on expression of osteopontin (OPN) mRNA and type Ⅰ collagen in rat osteoblasts in vitro and to explore its possible mechanisms in preventing osteoporosis. OB was isolated from calvar...To study the effects of Icariin on expression of osteopontin (OPN) mRNA and type Ⅰ collagen in rat osteoblasts in vitro and to explore its possible mechanisms in preventing osteoporosis. OB was isolated from calvaria of new-born new-born fetal Sprague-Dawley (SD) rats by means of modified sequential collagenase digestion and incubated in MEM medium and the cell morphology was observed under inverted phase contrast microscope, OB was identified by alkaline phosphatase (ALP) staining. Different concentration (0.1μg/mL, 1.0 μg/mL, 10 μ/mL) of Icariin was added to the OB and incubated. The effect of Icariin on the proliferation and osteogenesis of OB was monitored by MTT analysis. The expression of type l collagen was estimated with immunohistochemistry techniques. The expression levels of mRNA of OPN in the cells in every group were examined by reverse-transcriptase ploymerase chain reaction (RT-PCR). The expression of OPN mRNA and type Ⅰ collagen was strengthened gradually with the increase of Icariin concentration and peaked with 10 μg/mL Icariin on the 5th day. Icariin could significantly promote the expression of OPN mRNA and type Ⅰ collagen in rat osteoblasts in vitro. The levels of expression of OPN mRNA and type Ⅰ collagen were changed with different concentration of Icariin. Icariin could effectively prevent and treat osteoporosis and promote the bone formation.展开更多
AIM:To investigate the expression profiles of the transcription factor specificity protein 1(Sp1)and collagenⅠin recurrent pterygial tissues.What is more,to compare the changes of Sp1 and collagen I among primary pte...AIM:To investigate the expression profiles of the transcription factor specificity protein 1(Sp1)and collagenⅠin recurrent pterygial tissues.What is more,to compare the changes of Sp1 and collagen I among primary pterygial tissue,recurrent pterygial tissue and conjunctival tissue.METHODS:In the prospective study,we collected the pterygial tissues of 40 patients who underwent resection of primary pterygial tissue and recurrent pterygial tissue,and the conjunctival tissues of 10 patients with enucleation due to trauma.The relative expression levels of Sp1 and collagen I were analyzed by reverse transcription quantitative-polymerase chain reaction and Western blot.Paired t-test was performed to compare the Sp1 and collagen I of recurrent pterygial tissues,as well as the primary pterygial tissues and conjunctival tissues.In further,Pearson’s hypothesis testing of correlation coefficients was used to compare the correlations of Sp1 and Collagen I.RESULTS:The content of Sp1 and collagen I m RNA and protein was significantly greater in recurrent pterygial tissue than that was in primary and conjunctival tissue(P<0.05).There was a positive correlation between the m RNA and protein levels of Sp1 and collagen I in recurrent pterygial tissues(protein:r=0.913,P<0.05;m RNA:r=0.945,P<0.05).CONCLUSION:Sp1 and collagen I are expressed in normal conjunctival,primary,and recurrent pterygial tissues,but expression is significantly greater in the latter.Sp1 and collagen I may be involved in the regulation of the development of recurrent pterygium.展开更多
Recent studies have shown the potential of artificially synthesized conduits in the repair of peripheral nerve injury. Natural biopolymers have received much attention because of their biocompatibility. To investigate...Recent studies have shown the potential of artificially synthesized conduits in the repair of peripheral nerve injury. Natural biopolymers have received much attention because of their biocompatibility. To investigate the effects of novel electrospun absorbable poly(ε-caprolactone)/type Ⅰ collagen nanofiber conduits(biopolymer nanofiber conduits) on the repair of peripheral nerve injury, we bridged 10-mm-long sciatic nerve defects with electrospun absorbable biopolymer nanofiber conduits, poly(ε-caprolactone) or silicone conduits in Sprague-Dawley rats. Rat neurologica1 function was weekly evaluated using sciatic function index within8 weeks after repair. Eight weeks after repair, sciatic nerve myelin sheaths and axon morphology were observed by osmium tetroxide staining, hematoxylin-eosin staining, and transmission electron microscopy.S-100(Schwann cell marker) and CD4(inflammatory marker) immunoreactivities in sciatic nerve were detected by immunohistochemistry. In rats subjected to repair with electrospun absorbable biopolymer nanofiber conduits, no serious inflammatory reactions were observed in rat hind limbs, the morphology of myelin sheaths in the injured sciatic nerve was close to normal. CD4 immunoreactivity was obviously weaker in rats subjected to repair with electrospun absorbable biopolymer nanofiber conduits than in those subjected to repair with poly(ε-caprolactone) or silicone. Rats subjected to repair with electrospun absorbable biopolymer nanofiber conduits tended to have greater sciatic nerve function recovery than those receiving poly(ε-caprolactone) or silicone repair. These results suggest that electrospun absorbable poly(ε-caprolactone)/type Ⅰ collagen nanofiber conduits have the potential of repairing sciatic nerve defects and exhibit good biocompatibility. All experimental procedures were approved by Institutional Animal Care and Use Committee of Taichung Veteran General Hospital, Taiwan, China(La-1031218) on October 2, 2014.展开更多
The electrodes of a cochlear implant are located far from the surviving neurons of the spiral ganglion, which results in decreased precision of neural activation compared to the normal ear. If the neurons could be ind...The electrodes of a cochlear implant are located far from the surviving neurons of the spiral ganglion, which results in decreased precision of neural activation compared to the normal ear. If the neurons could be induced to extend neurites toward the implant, it might be possible to stimulate more discrete subpopulations of neurons, and to increase the resolution of the device. However, a major barrier to neurite growth toward a cochlear implant is the fluid filling the scala tympani, which separates the neurons from the electrodes. The goal of this study was to evaluate the growth of cochlear neurites in three-dimensional extracellular matrix molecule gels, and to increase biocompatibility by using fibroblasts stably transfected to produce neurotrophin-3 and brain-derived neurotrophic factor. Spiral ganglion explants from neonatal rats were evaluated in cultures. They were exposed to soluble neurotrophins, cells transfected to secrete neurotrophins, and/or collagen gels. We found that cochlear neurites grew readily on collagen surfaces and in three-dimensional collagen gels. Co-culture with cells producing neurotrophin-3 resulted in increased numbers of neurites, and neurites that were longer than when explants were cultured with control fibroblasts stably transfected with green fluorescent protein. Brain-derived neurotrophic factor-producing cells resulted in a more dramatic increase in the number of neurites, but there was no significant effect on neurite length. It is suggested that extracellular matrix molecule gels and cells transfected to produce neurotrophins offer an opportunity to attract spiral ganglion neurites toward a cochlear implant.展开更多
In this study, serum concentrations of carboxyterminal propeptide of type Ⅰ collagen(PICP) and carboxyterminal cross-linked telopeptide of type Ⅰ collagen (ICTP), which represent the rates of synthesis and degradati...In this study, serum concentrations of carboxyterminal propeptide of type Ⅰ collagen(PICP) and carboxyterminal cross-linked telopeptide of type Ⅰ collagen (ICTP), which represent the rates of synthesis and degradation of type Ⅰ collagen, were determined by radioimmunoassay in 56 patients with multiple myeloma (MM) and 22 healthy controls. It was discovered that serum concentrations of both PICP and ICTP were higher in MM than those in healthy controls (P<0. 01 ). With the disease progressing and the number of bone lesions increasing,serum concentration of ICTP elevated while serum concentration of PICP showed no significant change. Neither serum PICP nor ICTP concentration was related to M-component classes. Our results indicated that serum ICTP concentration was a good serological marker to reflect severity of bone lesions in MM and elevated serum PICP concentration might be due to compensatory increase in type Ⅰ collagen synthesis. Moreover, we also found that serum ICTP concentrations in MM correlated with serum interleukin-6 (IL-6) activities (r= 0. 610, P< 0. 01),which confirms the effectiveness of IL-6 as an osteoclast activating factor.展开更多
Objective and Methods: Excessive accumulation of collagen typeⅠ and type Ⅲ causes the formation of keloids and hypertrophic scars. To understand the mechanism by which antisense oligodeoxynucleotide (Oligo) acts on ...Objective and Methods: Excessive accumulation of collagen typeⅠ and type Ⅲ causes the formation of keloids and hypertrophic scars. To understand the mechanism by which antisense oligodeoxynucleotide (Oligo) acts on in vitro transcrption α1 (I) collagen gene, isotopes (α-32pGTP) was incorporated into 2 SP6 in vitro transcription systems. Results and Conclu- sion: Oligo 2 (at the transcription start region) could effectively inhibit in vitro transcription of pGEM3-Col13 and the control (random oligodeoxynucleotides) showed no inhibition. However, oligo 1 (at the transcription start region) obviously inhibited the in vitro transcription of pGEM3-Col14, while Oligo 2, which targeted at the down stream region (about 200 bp) of the promoter showed no significant inhibition effect.展开更多
文摘The three-dimensional(3D)cell culture system has garnered significant attention in recent years as a means of studying cell behavior and tissue development,as opposed to traditional two-dimensional cultures.These systems can induce specific cell reactions,promote specific tissue functions,and serve as valuable tools for research in tissue engineering,regenerative medicine,and drug discovery.This paper discusses current developments in the field of three-dimensional cell culture and the potential applications of 3D type 1 collagen gels to enhance the growth and maturation of dendritic cells.
文摘Collagen protein is an ideal scaffold material for the transplantation of neural stem cells. In this study rat neural stern cells were seeded into a three-dimensional collagen gel scaffold, with suspension cultured neural stem cells being used as a control group. Neural stem cells, which were cultured in medium containing epidermal growth factor and basic fibroblast growth factor, actively expanded and formed neurospheres in both culture groups. In serum-free medium conditions, the processes extended from neurospheres in the collagen gel group were much longer than those in the suspension culture group. Immunofluorescence staining showed that neurespheres cultured in collagen gels were stained positive for nestin and differentiated cells were stained positive for the neuronal marker βIII-tubulin, the astrocytic marker glial fibrillary acidic protein and the oligodendrocytic marker 2',3'-cyclic nucleotide 3'-phosphodiesterase. Compared with neurospheres cultured in suspension, the differentiation potential of neural stem cells cultured in collagen gels increased, with the formation of neurons at an early stage. Our results show that the three-dimensional collagen gel culture system is superior to suspension culture in the proliferation, differentiation and process outgrowth of neural stem cells.
基金supported by National Natural Science Foundation of China(No.81360252:81360128)Natural Science Foundation of Yunnan Province(No.2012FB025)
文摘Objective:To exploit- the effects of gentiana scabra bage on the expression of hepatic collagen proteins in Paragonimus skrjabini rats with liver fibrosis.Methods:Immunohistochemical technique was used to observe the changes of content of hepatic type Ⅰ,Ⅲ collagen proteins in Paragonimus skrjabini rats with Liver fibrosis before and after the gentiana scabra bage treatmeat.Results:Comparing with the model group,changes of hepatic tvpe Ⅰ and type Ⅲ collagen proteins in gentiana scabra bage treated group were significantly weakened.Conclusions:Gentiana scabra bage treatment can reduce the content of hepatic type Ⅲ and type Ⅰ collagen protein significantly in Paragonimus skrjabini rats with liver fibrosis,thereby,playing the role against hepatic fibrosis.
文摘To study the effects of Icariin on expression of osteopontin (OPN) mRNA and type Ⅰ collagen in rat osteoblasts in vitro and to explore its possible mechanisms in preventing osteoporosis. OB was isolated from calvaria of new-born new-born fetal Sprague-Dawley (SD) rats by means of modified sequential collagenase digestion and incubated in MEM medium and the cell morphology was observed under inverted phase contrast microscope, OB was identified by alkaline phosphatase (ALP) staining. Different concentration (0.1μg/mL, 1.0 μg/mL, 10 μ/mL) of Icariin was added to the OB and incubated. The effect of Icariin on the proliferation and osteogenesis of OB was monitored by MTT analysis. The expression of type l collagen was estimated with immunohistochemistry techniques. The expression levels of mRNA of OPN in the cells in every group were examined by reverse-transcriptase ploymerase chain reaction (RT-PCR). The expression of OPN mRNA and type Ⅰ collagen was strengthened gradually with the increase of Icariin concentration and peaked with 10 μg/mL Icariin on the 5th day. Icariin could significantly promote the expression of OPN mRNA and type Ⅰ collagen in rat osteoblasts in vitro. The levels of expression of OPN mRNA and type Ⅰ collagen were changed with different concentration of Icariin. Icariin could effectively prevent and treat osteoporosis and promote the bone formation.
基金Supported by the Key Program of Natural Science Research of Anhui Provincial Education Department(No.KJ2019A1097)Science Foundation of Anhui Provincial Health Bureau(No.2018SEYL025)Natural Science Research of Anhui Provincial Education Department(No.12925KJ2018B11)。
文摘AIM:To investigate the expression profiles of the transcription factor specificity protein 1(Sp1)and collagenⅠin recurrent pterygial tissues.What is more,to compare the changes of Sp1 and collagen I among primary pterygial tissue,recurrent pterygial tissue and conjunctival tissue.METHODS:In the prospective study,we collected the pterygial tissues of 40 patients who underwent resection of primary pterygial tissue and recurrent pterygial tissue,and the conjunctival tissues of 10 patients with enucleation due to trauma.The relative expression levels of Sp1 and collagen I were analyzed by reverse transcription quantitative-polymerase chain reaction and Western blot.Paired t-test was performed to compare the Sp1 and collagen I of recurrent pterygial tissues,as well as the primary pterygial tissues and conjunctival tissues.In further,Pearson’s hypothesis testing of correlation coefficients was used to compare the correlations of Sp1 and Collagen I.RESULTS:The content of Sp1 and collagen I m RNA and protein was significantly greater in recurrent pterygial tissue than that was in primary and conjunctival tissue(P<0.05).There was a positive correlation between the m RNA and protein levels of Sp1 and collagen I in recurrent pterygial tissues(protein:r=0.913,P<0.05;m RNA:r=0.945,P<0.05).CONCLUSION:Sp1 and collagen I are expressed in normal conjunctival,primary,and recurrent pterygial tissues,but expression is significantly greater in the latter.Sp1 and collagen I may be involved in the regulation of the development of recurrent pterygium.
基金supported by grants from the Taichung Veterans General Hospital and Central Taiwan University of Science and Technology,No.TCVGH-CTUST1047701(to CCS and BSL)Taichung Veterans General Hospital,No.TCVGH-1034907C(to CCS),Taiwan,China
文摘Recent studies have shown the potential of artificially synthesized conduits in the repair of peripheral nerve injury. Natural biopolymers have received much attention because of their biocompatibility. To investigate the effects of novel electrospun absorbable poly(ε-caprolactone)/type Ⅰ collagen nanofiber conduits(biopolymer nanofiber conduits) on the repair of peripheral nerve injury, we bridged 10-mm-long sciatic nerve defects with electrospun absorbable biopolymer nanofiber conduits, poly(ε-caprolactone) or silicone conduits in Sprague-Dawley rats. Rat neurologica1 function was weekly evaluated using sciatic function index within8 weeks after repair. Eight weeks after repair, sciatic nerve myelin sheaths and axon morphology were observed by osmium tetroxide staining, hematoxylin-eosin staining, and transmission electron microscopy.S-100(Schwann cell marker) and CD4(inflammatory marker) immunoreactivities in sciatic nerve were detected by immunohistochemistry. In rats subjected to repair with electrospun absorbable biopolymer nanofiber conduits, no serious inflammatory reactions were observed in rat hind limbs, the morphology of myelin sheaths in the injured sciatic nerve was close to normal. CD4 immunoreactivity was obviously weaker in rats subjected to repair with electrospun absorbable biopolymer nanofiber conduits than in those subjected to repair with poly(ε-caprolactone) or silicone. Rats subjected to repair with electrospun absorbable biopolymer nanofiber conduits tended to have greater sciatic nerve function recovery than those receiving poly(ε-caprolactone) or silicone repair. These results suggest that electrospun absorbable poly(ε-caprolactone)/type Ⅰ collagen nanofiber conduits have the potential of repairing sciatic nerve defects and exhibit good biocompatibility. All experimental procedures were approved by Institutional Animal Care and Use Committee of Taichung Veteran General Hospital, Taiwan, China(La-1031218) on October 2, 2014.
基金supported by grants from the Research Service of the United States Veterans Administration (to Allen Frederic Ryan and Stephen Fausti)the National Institute of Health/National Institute on Deafness and Other Communication Disorders (to Allen Frederic Ryan)+2 种基金the National Institute of Health Summer Research Program (to Joanna Xie)the Deafness Research Foundation (to Lina Mullen)the National Organization for Hearing Research (to Lina Mullen)
文摘The electrodes of a cochlear implant are located far from the surviving neurons of the spiral ganglion, which results in decreased precision of neural activation compared to the normal ear. If the neurons could be induced to extend neurites toward the implant, it might be possible to stimulate more discrete subpopulations of neurons, and to increase the resolution of the device. However, a major barrier to neurite growth toward a cochlear implant is the fluid filling the scala tympani, which separates the neurons from the electrodes. The goal of this study was to evaluate the growth of cochlear neurites in three-dimensional extracellular matrix molecule gels, and to increase biocompatibility by using fibroblasts stably transfected to produce neurotrophin-3 and brain-derived neurotrophic factor. Spiral ganglion explants from neonatal rats were evaluated in cultures. They were exposed to soluble neurotrophins, cells transfected to secrete neurotrophins, and/or collagen gels. We found that cochlear neurites grew readily on collagen surfaces and in three-dimensional collagen gels. Co-culture with cells producing neurotrophin-3 resulted in increased numbers of neurites, and neurites that were longer than when explants were cultured with control fibroblasts stably transfected with green fluorescent protein. Brain-derived neurotrophic factor-producing cells resulted in a more dramatic increase in the number of neurites, but there was no significant effect on neurite length. It is suggested that extracellular matrix molecule gels and cells transfected to produce neurotrophins offer an opportunity to attract spiral ganglion neurites toward a cochlear implant.
文摘In this study, serum concentrations of carboxyterminal propeptide of type Ⅰ collagen(PICP) and carboxyterminal cross-linked telopeptide of type Ⅰ collagen (ICTP), which represent the rates of synthesis and degradation of type Ⅰ collagen, were determined by radioimmunoassay in 56 patients with multiple myeloma (MM) and 22 healthy controls. It was discovered that serum concentrations of both PICP and ICTP were higher in MM than those in healthy controls (P<0. 01 ). With the disease progressing and the number of bone lesions increasing,serum concentration of ICTP elevated while serum concentration of PICP showed no significant change. Neither serum PICP nor ICTP concentration was related to M-component classes. Our results indicated that serum ICTP concentration was a good serological marker to reflect severity of bone lesions in MM and elevated serum PICP concentration might be due to compensatory increase in type Ⅰ collagen synthesis. Moreover, we also found that serum ICTP concentrations in MM correlated with serum interleukin-6 (IL-6) activities (r= 0. 610, P< 0. 01),which confirms the effectiveness of IL-6 as an osteoclast activating factor.
文摘Objective and Methods: Excessive accumulation of collagen typeⅠ and type Ⅲ causes the formation of keloids and hypertrophic scars. To understand the mechanism by which antisense oligodeoxynucleotide (Oligo) acts on in vitro transcrption α1 (I) collagen gene, isotopes (α-32pGTP) was incorporated into 2 SP6 in vitro transcription systems. Results and Conclu- sion: Oligo 2 (at the transcription start region) could effectively inhibit in vitro transcription of pGEM3-Col13 and the control (random oligodeoxynucleotides) showed no inhibition. However, oligo 1 (at the transcription start region) obviously inhibited the in vitro transcription of pGEM3-Col14, while Oligo 2, which targeted at the down stream region (about 200 bp) of the promoter showed no significant inhibition effect.