AIM: To investigate the dynamic changes of activator protein 1(AP1) and collagen I expression in the sclera of form-deprivation myopic model in guinea pigs. METHODS: A form-deprivation myopic model in guinea pigs were...AIM: To investigate the dynamic changes of activator protein 1(AP1) and collagen I expression in the sclera of form-deprivation myopic model in guinea pigs. METHODS: A form-deprivation myopic model in guinea pigs were established with the left eye covered for 2 to 6 wk(FDM group). Normal control group(n=25) were untreated. Changes in refractive power and axial length(AL) were measured and recorded at different time points. Expressions of AP1 and collagen 1 of the sclera were measured with Western blotting and reverse transcription-polymerase chain reaction(RT-PCR). The relationship between AP1 and collagen I levels was analyzed. RESULTS: After 0, 2, 4, 6 wk, and 4/-1 wk of form-deprivation, the diopter in the FDM group was gradually changed(2.08±0.31,-1.23±0.68,-4.17±0.58,-7.07±0.55, and-2.67±0.59 D, respectively, P<0.05), and the AL was gradually increased(5.90±0.38, 6.62±0.37, 7.30±0.35, 7.99±0.31, and 6.97±0.32 mm, respectively, P<0.05). With the prolongation of covered time, the protein expressions of AP1 and collagen I in the FDM group were gradually down-regulated(all P<0.05);the mRNA expressions of them were also gradually down-regulated(all P<0.05);and there was positive correlation between them. The control group had no obvious change in each index(all P>0.05). CONCLUSION: AP1 may be an important transcription factor involved in the regulation of collagen I synthesis and degradation during myopic scleral remodeling.展开更多
Following acute and chronic liver injury,hepatic stellate cells (HSCs) become activated to undergo a phenotypic transformation into myofibroblast-like cells and lose their retinol content,but the mechanisms of retinoi...Following acute and chronic liver injury,hepatic stellate cells (HSCs) become activated to undergo a phenotypic transformation into myofibroblast-like cells and lose their retinol content,but the mechanisms of retinoid loss and its potential roles in HSCs activation and liver fibrosis are not understood.The influence of retinoids on HSCs and hepatic fibrosis remains controversial.The purpose of this study was to evaluate the effects of all-trans retinoid acid (ATRA) on cell proliferation,mRNA expression of collagen genes [procollagen α1 (Ⅰ),procollagen α1 (Ⅲ)],profibrogenic genes (TGF-β 1,CTGF,MMP-2,TIMP-1,TIMP-2,PAI-1),fibrolytic genes (MMP-3,MMP-13) and the upstream element (JNK and AP-1) in the rat hepatic stellate cell line (CFSC-2G).Cell proliferation was evaluated by measuring BrdU incorporation.The mRNA expression levels of collagen genes [procollagen α1 (Ⅰ),procollagen α1 (Ⅲ)],profibrogenic genes (TGF-β 1,CTGF,MMP-2,TIMP-1,TIMP-2,PAI-1),and fibrolytic genes (MMP-3,MMP-13) were quantitatively detected by using real-time PCR.The mRNA expression of JNK and AP-1 was quantified by RT-PCR.The results showed that ATRA inhibited HSCs proliferation and diminished the mRNA expression of collagen genes [procollagen α1 (Ⅰ),procollagen α1 (Ⅲ)] and profibrogenic genes (TGF-β 1,CTGF,MMP-2,TIMP-1,TIMP-2,PAI-1),and significantly stimulated the mRNA expression of MMP-3 and MMP-13 in HSCs by suppressing the mRNA expression of JNK and AP-1.These findings suggested that ATRA could inhibit proliferation and collagen production of HSCs via the suppression of active protein-1 and c-Jun N-terminal kinase signal,then decrease the mRNAs expression of profibrogenic genes (TGF-β 1,CTGF,MMP-2,TIMP-1,TIMP-2,PAI-1),and significantly induce the mRNA expression of MMP-3 and MMP-13.展开更多
Objective and Methods: Excessive accumulation of collagen typeⅠ and type Ⅲ causes the formation of keloids and hypertrophic scars. To understand the mechanism by which antisense oligodeoxynucleotide (Oligo) acts on ...Objective and Methods: Excessive accumulation of collagen typeⅠ and type Ⅲ causes the formation of keloids and hypertrophic scars. To understand the mechanism by which antisense oligodeoxynucleotide (Oligo) acts on in vitro transcrption α1 (I) collagen gene, isotopes (α-32pGTP) was incorporated into 2 SP6 in vitro transcription systems. Results and Conclu- sion: Oligo 2 (at the transcription start region) could effectively inhibit in vitro transcription of pGEM3-Col13 and the control (random oligodeoxynucleotides) showed no inhibition. However, oligo 1 (at the transcription start region) obviously inhibited the in vitro transcription of pGEM3-Col14, while Oligo 2, which targeted at the down stream region (about 200 bp) of the promoter showed no significant inhibition effect.展开更多
Introduction: Collagen is the primary structural protein fibroblasts produce in the skin’s extracellular matrix. Infiltration of neutrophils into the epidermis and dermis by exposure to UV causes collagen damage and ...Introduction: Collagen is the primary structural protein fibroblasts produce in the skin’s extracellular matrix. Infiltration of neutrophils into the epidermis and dermis by exposure to UV causes collagen damage and contributes to photoaging. Methods: To study the combined effect of Lumenato and ceramide in preventing collagen-1 damage induced by phagocytes, we used co-cultures of normal human dermal fibroblasts (fibroblasts) and activated human neutrophils. The present study aimed to determine the protective effect of the combination of Lumenato and ceramide on fibroblast collagen-1 damage induced by neutrophils. Results: Lumenato (in the range of 6.5 - 208 μg/ml) or ceramide (in the range of 0.1 - 50 μM) inhibited the production of superoxides and MPO by TNFα-stimulated neutrophils, as well as the production of NO by LPS-stimulated macrophages in a dose-dependent manner. The combinations of Lumenato and ceramide, in low concentrations, caused synergistic prevention of fibroblasts’ collagen-1 damage induced by TNFα-activated neutrophils, detected by fluorescence immunostaining and WB analysis. MPO activity in the supernatants of the co-cultures was also synergistically inhibited. Adding Lumenato or ceramide singly or in combinations in these low concentrations to the fibroblast cultures did not affect the expression of collagen-1. The combinations of Lumenato or ceramide in these concentrations also caused a synergistic inhibition of NO production by activated macrophages. Conclusions: The results suggest that combining low concentrations of Lumenato and ceramide results in synergistic protection against fibroblasts’ collagen-1 damage induced by neutrophils, thus indicating their possible potential for enhanced skin health.展开更多
基金Supported by the Natural Science Foundation of Anhui Province(No.1508085MH188)Education and Research Project of Anhui Education Department(No.2016jyxm0546)
文摘AIM: To investigate the dynamic changes of activator protein 1(AP1) and collagen I expression in the sclera of form-deprivation myopic model in guinea pigs. METHODS: A form-deprivation myopic model in guinea pigs were established with the left eye covered for 2 to 6 wk(FDM group). Normal control group(n=25) were untreated. Changes in refractive power and axial length(AL) were measured and recorded at different time points. Expressions of AP1 and collagen 1 of the sclera were measured with Western blotting and reverse transcription-polymerase chain reaction(RT-PCR). The relationship between AP1 and collagen I levels was analyzed. RESULTS: After 0, 2, 4, 6 wk, and 4/-1 wk of form-deprivation, the diopter in the FDM group was gradually changed(2.08±0.31,-1.23±0.68,-4.17±0.58,-7.07±0.55, and-2.67±0.59 D, respectively, P<0.05), and the AL was gradually increased(5.90±0.38, 6.62±0.37, 7.30±0.35, 7.99±0.31, and 6.97±0.32 mm, respectively, P<0.05). With the prolongation of covered time, the protein expressions of AP1 and collagen I in the FDM group were gradually down-regulated(all P<0.05);the mRNA expressions of them were also gradually down-regulated(all P<0.05);and there was positive correlation between them. The control group had no obvious change in each index(all P>0.05). CONCLUSION: AP1 may be an important transcription factor involved in the regulation of collagen I synthesis and degradation during myopic scleral remodeling.
文摘Following acute and chronic liver injury,hepatic stellate cells (HSCs) become activated to undergo a phenotypic transformation into myofibroblast-like cells and lose their retinol content,but the mechanisms of retinoid loss and its potential roles in HSCs activation and liver fibrosis are not understood.The influence of retinoids on HSCs and hepatic fibrosis remains controversial.The purpose of this study was to evaluate the effects of all-trans retinoid acid (ATRA) on cell proliferation,mRNA expression of collagen genes [procollagen α1 (Ⅰ),procollagen α1 (Ⅲ)],profibrogenic genes (TGF-β 1,CTGF,MMP-2,TIMP-1,TIMP-2,PAI-1),fibrolytic genes (MMP-3,MMP-13) and the upstream element (JNK and AP-1) in the rat hepatic stellate cell line (CFSC-2G).Cell proliferation was evaluated by measuring BrdU incorporation.The mRNA expression levels of collagen genes [procollagen α1 (Ⅰ),procollagen α1 (Ⅲ)],profibrogenic genes (TGF-β 1,CTGF,MMP-2,TIMP-1,TIMP-2,PAI-1),and fibrolytic genes (MMP-3,MMP-13) were quantitatively detected by using real-time PCR.The mRNA expression of JNK and AP-1 was quantified by RT-PCR.The results showed that ATRA inhibited HSCs proliferation and diminished the mRNA expression of collagen genes [procollagen α1 (Ⅰ),procollagen α1 (Ⅲ)] and profibrogenic genes (TGF-β 1,CTGF,MMP-2,TIMP-1,TIMP-2,PAI-1),and significantly stimulated the mRNA expression of MMP-3 and MMP-13 in HSCs by suppressing the mRNA expression of JNK and AP-1.These findings suggested that ATRA could inhibit proliferation and collagen production of HSCs via the suppression of active protein-1 and c-Jun N-terminal kinase signal,then decrease the mRNAs expression of profibrogenic genes (TGF-β 1,CTGF,MMP-2,TIMP-1,TIMP-2,PAI-1),and significantly induce the mRNA expression of MMP-3 and MMP-13.
文摘Objective and Methods: Excessive accumulation of collagen typeⅠ and type Ⅲ causes the formation of keloids and hypertrophic scars. To understand the mechanism by which antisense oligodeoxynucleotide (Oligo) acts on in vitro transcrption α1 (I) collagen gene, isotopes (α-32pGTP) was incorporated into 2 SP6 in vitro transcription systems. Results and Conclu- sion: Oligo 2 (at the transcription start region) could effectively inhibit in vitro transcription of pGEM3-Col13 and the control (random oligodeoxynucleotides) showed no inhibition. However, oligo 1 (at the transcription start region) obviously inhibited the in vitro transcription of pGEM3-Col14, while Oligo 2, which targeted at the down stream region (about 200 bp) of the promoter showed no significant inhibition effect.
文摘Introduction: Collagen is the primary structural protein fibroblasts produce in the skin’s extracellular matrix. Infiltration of neutrophils into the epidermis and dermis by exposure to UV causes collagen damage and contributes to photoaging. Methods: To study the combined effect of Lumenato and ceramide in preventing collagen-1 damage induced by phagocytes, we used co-cultures of normal human dermal fibroblasts (fibroblasts) and activated human neutrophils. The present study aimed to determine the protective effect of the combination of Lumenato and ceramide on fibroblast collagen-1 damage induced by neutrophils. Results: Lumenato (in the range of 6.5 - 208 μg/ml) or ceramide (in the range of 0.1 - 50 μM) inhibited the production of superoxides and MPO by TNFα-stimulated neutrophils, as well as the production of NO by LPS-stimulated macrophages in a dose-dependent manner. The combinations of Lumenato and ceramide, in low concentrations, caused synergistic prevention of fibroblasts’ collagen-1 damage induced by TNFα-activated neutrophils, detected by fluorescence immunostaining and WB analysis. MPO activity in the supernatants of the co-cultures was also synergistically inhibited. Adding Lumenato or ceramide singly or in combinations in these low concentrations to the fibroblast cultures did not affect the expression of collagen-1. The combinations of Lumenato or ceramide in these concentrations also caused a synergistic inhibition of NO production by activated macrophages. Conclusions: The results suggest that combining low concentrations of Lumenato and ceramide results in synergistic protection against fibroblasts’ collagen-1 damage induced by neutrophils, thus indicating their possible potential for enhanced skin health.