This study aimed to utilize micro-computed tomography (micro-CT) analysis to compare new bone formation in rat calvarial defects using chitosan/fibroin-hydroxyapatite (CFB-HAP) or collagen (Bio-Gide) membranes. ...This study aimed to utilize micro-computed tomography (micro-CT) analysis to compare new bone formation in rat calvarial defects using chitosan/fibroin-hydroxyapatite (CFB-HAP) or collagen (Bio-Gide) membranes. Fifty-four (54) rats were studied. A circular bony defect (8 mm diameter) was formed in the centre of the calvaria using a trephine bur. The CFB-HAP membrane was prepared by thermally induced phase separation. In the experimental group (n= 18), the CFB-HAP membrane was used to cover the bony defect, and in the control group (n= 18), a resorbable collagen membrane (Bio-Gide) was used. In the negative control group (n= 18), no membrane was used. In each group, six animals were euthanized at 2, 4 and 8 weeks after surgery. The specimens were then analysed using micro-CT. There were significant differences in bone volume (BV) and bone mineral density (BMD) (P〈O.05) between the negative control group and the membrane groups. However, there were no significant differences between the CFB-HAP group and the collagen group. We concluded that the CFB-HAP membrane has significant potential as a guided bone regeneration (GBR) membrane.展开更多
The aim of the present study was to investigate and compare the bone formation capacity with three different grafts. Four millimeter segmental defects were created in adult rat tibias and were either left empty (cont...The aim of the present study was to investigate and compare the bone formation capacity with three different grafts. Four millimeter segmental defects were created in adult rat tibias and were either left empty (control defects) or implanted with (1) nano-hydroxyapatite/collagen/PIA (nHAC/PIA) composite, (2) nHAC/ PIA composite added with bone marrow mesenchymal tem cells ( BMSCs ), ( 3 ) nHAC/ PIA composite added with bone morphogenetic protein 2 ( BMP- 2). Radiographs of the defects were taken weekly post-surgery. After 1 or 2 months, the rats were eathaaized. Histologic analyses were performed on the harvested tissue. nHAC/ PIA composite could enhance the repair of rat tibia segmental defects. Addition of BMSCs or BMP- 2 to nHAC/ PIA led to an increase in osteogenesis, nHAC/ PIA composite could be an Meal alternative bone-grafi material and it could also be used as an Meal carrier of BMSCs or BMP- 2.展开更多
Bone tissue engineering, aiming at developing bone substitutes for repair and regeneration of bone defects instead of using autologous bone grafts,has attracted wide attention in the field of tissue engineering and re...Bone tissue engineering, aiming at developing bone substitutes for repair and regeneration of bone defects instead of using autologous bone grafts,has attracted wide attention in the field of tissue engineering and regenerative medicine.Developing biomimetic biomaterial scaffolds able to regulate osteogenic differentiation of stem cells could be a promising strategy to improve the therapeutic efficacy.In this study, electrospun composite nanofibers of hydroxyapatite / collagen / chitosan( HAp / Col / CTS)resembling the fibrous nanostructure and constituents of the hierarchically organized natural bone,were prepared to investigate their capacity for promoting bone mesenchymal stem cells( BMSCs)to differentiate into the osteogenic lineage in the absence and presence of the osteogenic supplementation, respectively.Cell morphology,proliferation and quantified specific osteogenic protein expression on the electrospun HAp / Col / CTS scaffolds were evaluated in comparison with different controls including electrospun nanofibrous CTS,HAp / CTS and tissue culture plate.Our results showed that the nanofibrous HAp / Col / CTS scaffolds supported better spreading and proliferation of the BMSCs than other substrates( P < 0.01).Expressions of osteogenesis protein markers,alkaline phosphatase( ALP) and Col,were significantly upregulated on the HAp / Col / CTS than those on the CTS( P < 0.01) and HAp /CTS( P < 0.05) scaffolds in the absence of the osteogenic supplementation.Moreover,presence of osteogenic supplementation also proved to enhance osteogenic differentiation of BMSCs on HAp /Col / CTS scaffolds, indicative of a synergistic effect.This study highlights the potential of BMSCs / HAp / Col / CTS cell-scaffold system for functional bone repair and regeneration applications.展开更多
Purpose: Bone grafting is still requested to fill bone defects in traumatology, or after tumor removal, but also in orthopedic surgery for spine, arthroplasty revisions, and osteotomies. Due to the limitations of auto...Purpose: Bone grafting is still requested to fill bone defects in traumatology, or after tumor removal, but also in orthopedic surgery for spine, arthroplasty revisions, and osteotomies. Due to the limitations of autografts and allografts, and the progress of biomaterial research, a large number of nonhuman bony scaffolds have been developed including synthetic calcium phosphates and highly processed xenografts. The most important parameters for bone ingrowth are the macroporosity of the scaffold with the suitable biological autologous cells and factors, optimal osteoinductive, osteointegrative and osteoconductive properties can be achieved. Methods and Results: The important factors regulating these properties are discussed in this paper, which also reports preclinical and clinical results obtained with such bone graft substitutes. Conclusions: Among different bone graft substitutes available, the porosity, the accessibility of pores, the internal surface exposed to the biological components of bone repair, are present in highly processed bovine hydroxyapatites. Compared to autografts, allografts and synthetic substitutes, they associate an initial conductivity, and a long term stability suitable for some orthopedic indications.展开更多
Objective: To investigate the effect of nano hydroxyapatite/collagen (nHA/collagen) composite as a graft extender and enhancer when combined with recombinant human bone morphogenetic protein 2 (rhBMP 2) on lumbar inte...Objective: To investigate the effect of nano hydroxyapatite/collagen (nHA/collagen) composite as a graft extender and enhancer when combined with recombinant human bone morphogenetic protein 2 (rhBMP 2) on lumbar intertransverse fusion in rabbits. Methods: Sixty four adult female New Zealand white rabbits, aged 1 year and weighing 3.5 4.5 kg, underwent similar posterolateral intertransverse process arthrodesis and were randomly divided into 4 groups based on different grafts: autogenous cancellous bone alone (ACB group), nHA/collagen alone (HAC group), half autogenous cancellous bone and half nHA/collagen (ACB+HAC group) and nHA/collagen combined with rhBMP 2 (HAC+BMP group). The fusion masses were analyzed by manual palpation, radiography, biomechanical testing and histological examination. Results: Fusion was observed in 4 cases in the 6th week and in 5 cases in the 10th week after surgery in ACB group. No case showed fusion in HAC group. In ACB+HAC group, there was fusion in 3 cases in the 6th week and in 4 cases in the 10th week after surgery. In HAC+BMP group, fusion in 1 case was found in the 4th week, in 5 cases in the 6th week and in 6 cases in the 10th week after surgery. It suggested that ACB, ACB+HAC and HAC+BMP groups showed similar fusion ratio and mechanical strength in the 6th and 10th week after surgery. According to the microstructure analysis of the samples, nHA/collagen had no negative effect when implanted together with ilium autograft. In HAC+BMP group, new bone like tissue was observed in the 2nd week postoperatively, and nearly all of the implanted composites were replaced by mature bone matrix and new bones in 10th week postoperatively. Conclusions: The nHA/collagen, especially combined with rhBMP 2, is a promising bone substitute, for it has quick biodegradation, fine bone bending ability, and high osteoconductivity on posterolateral spinal fusion in rabbits.展开更多
Objective: To explore the method to repair bone defect with bone-morphogenetic-protein loaded hydroxyapatite/collagen-poly(L-lactic acid) composite. Methods: 18 adult beagle dogs were randomly divided into 3 groups. I...Objective: To explore the method to repair bone defect with bone-morphogenetic-protein loaded hydroxyapatite/collagen-poly(L-lactic acid) composite. Methods: 18 adult beagle dogs were randomly divided into 3 groups. In Group A, bone-morphogenetic-protein (BMP) loaded hydroxyapatite/collagen-poly(L-lactic acid) (HAC-PLA) scaffold was implanted in a 2 cm diaphyseal defect in the radius. In Group B, unloaded pure HAC-PLA scaffold was implanted in the defects. No material was implanted in Group C (control group). The dogs were sacrificed 6 months postoperatively. Features of biocompatibility, biodegradability and osteoinduction were evaluated with histological, radiological examinations and bone mineral density (BMD) measurements. Results: In Group A, the radius defect healed after the treatment with BMP loaded HAC-PLA. BMD at the site of the defect was higher than that of the contralateral radius. Fibrous union developed in the animals of the control group. Conclusions: BMP not only promotes osteogenesis but also accelerates degradation of the biomaterials. Optimized design parameters of a three-dimensional porous biomaterial would give full scope to the role of BMP as an osteoinductive growth factor.展开更多
In this research,bone cement was prepared by mixing 2 g of magnesium hydroxyapatite(laboratory synthesized),12 g of polymethyl methacrylate,4 g of methyl methacrylate,and collagen(1,3,and 6 g).The samples were molded ...In this research,bone cement was prepared by mixing 2 g of magnesium hydroxyapatite(laboratory synthesized),12 g of polymethyl methacrylate,4 g of methyl methacrylate,and collagen(1,3,and 6 g).The samples were molded in a circular shape.They were inspected by visual microscopy,FTIR,XRD,and FESEM.They were engrossed in synthesized simulated body fluid for 1 month and then inspected by visual microscopy,FTIR,XRD,and FESEM.The samples prepared from 6 g of collagen showed the highest hydroxyapatite formation(high osseointegration)than the other samples.展开更多
Biomimetic collagen/hydroxyapatite scaffolds have been prepared by microwave assisted co-titration of phosphorous acid-containing collagen solution and calcium hydroxide-containing solution. The resultant scaffolds ha...Biomimetic collagen/hydroxyapatite scaffolds have been prepared by microwave assisted co-titration of phosphorous acid-containing collagen solution and calcium hydroxide-containing solution. The resultant scaffolds have been characterised with respect to their mechanical properties, composition and microstructures. It was observed that the in situ precipitation process could combine collagen fibril formation and hydroxyapatite (HAp) formation in one process step. Collagen fibrils guided hydroxyapatite precipitation to form bone-mimic collagen/hydroxyapatite composite containing both intrafibrillar and interfibrillar hydroxyapatites. The mineral phase was determined as low crystalline calcium-deficient hydroxyapatite with calcium to phosphorus ratio (Ca/P) of 1.4. The obtained 1% (collagen/HAp = 75/25) scaffold has a porosity of 72% and a mean pore size of 69.4 ~tm. The incorporation of hydroxyapatite into collagen matrix improved the mechanical modulus of the scaffold significantly. This could be attributed to hydroxyapatite crystallites in collagen fibrils which restricted the deformation of the collagen fibril network, and the load transfer of the collagen to the higher modulus mineral component of the composite.展开更多
The macrophages mediated biodegradation of two biomaterials, collagen / hydroxylapatite (CHA) and beta-tricalcium phosphate ceramics (TCP), was studied in 24 male Kunming mice and 20 male C57BL / 6 mice with histopath...The macrophages mediated biodegradation of two biomaterials, collagen / hydroxylapatite (CHA) and beta-tricalcium phosphate ceramics (TCP), was studied in 24 male Kunming mice and 20 male C57BL / 6 mice with histopathologic, histochemical and ultrastructural observation. It was demonstrated that macrophages infiltrated after CHA, TCP were implanted. The macrophages could be differentiated from fibroblasts and the other infiltrated cells for special cellular profile and strong acid phosphatase activity. Morphologically, monocyte macrophages and infused multinuclear giant cell degraded CHA and TCP by phagocytosis and extracellular resorption. The carbonic anhydrase activity of macrophages was demonstrated by histochemical technique. It suggested that macrophages secreted H+ and accomplished the decalcification of calcium phosphate compound of CHA and TCP. We conclude that macrophages are the main mediating cells which degraded CHA and TCP intracellularly and extracellularly.展开更多
Curettage of benign bone tumor is a common cause for bone defect.For such bone defect repair,autogenous bone,allogeneic bone and traditional artificial bone graft substitutes have many disadvantages.In recent years,a ...Curettage of benign bone tumor is a common cause for bone defect.For such bone defect repair,autogenous bone,allogeneic bone and traditional artificial bone graft substitutes have many disadvantages.In recent years,a biomimetic mineralized collagen(MC)with similar composition and microstructures to the natural bone matrix was developed and used for treating various bone defects.In this work,a retrospective study analyzed clinical outcomes of patients treated with curettage of benign bone tumors and bone grafting with MC,in comparison to another group treated with the same surgical method and autogenous bone.Lane-Sandhu X-ray score of the autogenous bone group was superior to the MC group at 1 month after the operation,but the two groups had no statistical difference at 6 and 12 months.The MC group was better in Musculoskeletal Tumor Society scoring at 1 and 6 months after the operation,and the two groups had no statistical difference at 12 month.Therefore,the MC performed not as good as autogenous bone in early stage of bone healing but achieved comparable outcomes in long-term follow-ups.Moreover,the MC has advantages in function recovery and avoided potential complications induced by harvesting autogenous bone.展开更多
目的:评估以胶原、羟基磷灰石、硫酸软骨素等3种天然骨骼基本成分构建成的三维多孔骨修复材料的理化性能和体内生物学性能,观察其作为骨形态发生蛋白(bone morphogenetic protein 2,BMP-2)载体的效果。方法:以胶原、羟基磷灰石、硫酸软...目的:评估以胶原、羟基磷灰石、硫酸软骨素等3种天然骨骼基本成分构建成的三维多孔骨修复材料的理化性能和体内生物学性能,观察其作为骨形态发生蛋白(bone morphogenetic protein 2,BMP-2)载体的效果。方法:以胶原、羟基磷灰石、硫酸软骨素及BMP-2为原料,通过化学交联和冷冻干燥的方法构建具有一定三维结构的骨修复材料。通过HE染色、扫描电镜观察材料的结构性能;通过表面能谱、X线衍射观察材料的理化性能;将骨髓基质干细胞(marrow stromal cells,MSCs)种植在材料表面,观察MSCs在材料表面的粘附、增生和分化;将该复合材料种植在大鼠体内,观察材料在体内的降解和异位成骨情况。结果:骨修复材料在植入局部保持完整的支架结构,具有利于细胞粘附和增殖的多孔结构。通过肌肉埋植,在异位诱导形成了骨组织,并且随着骨组织的形成,支架逐渐降解吸收。结论:胶原-羟基磷灰石-硫酸软骨素-骨形态发生蛋白是具有良好的生物相容性和骨诱导特性的骨修复材料。展开更多
目的回顾性分析经股骨头颈交界处开窗、灯泡状病灶清除、打压植骨术结合纳米晶胶原基骨和自体骨移植治疗早期股骨头坏死(osteonecrosis of femoralhead,ONFH)的临床疗效。方法2001年1月-2005年7月,收治26例35髋ONFH患者。男16例,女10例...目的回顾性分析经股骨头颈交界处开窗、灯泡状病灶清除、打压植骨术结合纳米晶胶原基骨和自体骨移植治疗早期股骨头坏死(osteonecrosis of femoralhead,ONFH)的临床疗效。方法2001年1月-2005年7月,收治26例35髋ONFH患者。男16例,女10例;年龄19~54岁,平均33.5岁。病程12~36个月,平均18个月。ONFH病因:激素性15例22髋,酒精性10例12髋,特发性1例1髋。ARCO分期:ⅡB期6髋,ⅡC期16髋,ⅢA期9髋,ⅢB期3髋,ⅢC期1髋。Harris评分为(62.2±7.5)分。术中采用经股骨头颈交界处开窗、灯泡状病灶清除,按1∶1比例行纳米晶胶原基骨和自体骨移植治疗。结果患者术后切口均Ⅰ期愈合。术中2例髂骨取骨伤及股外侧皮神经,术后3~6个月神经支配区麻木症状自行缓解消失;2例术后3个月出现异位骨化并发症,未行特殊处理。患者均获随访,随访时间2~7年,平均3.5年。术后3个月患者植骨愈合。术后Harris评分为(85.1±16.2)分,与术前比较差异有统计学意义(P<0.001)。其中优15髋,良11髋,可5髋,差4髋。获差的4例患者均于随访期末行全髋关节置换术。影像学检查示5髋由术前ⅡC期进展至ⅢA期;余髋关节影像学表现稳定,ONFH分期无进展。结论经股骨头颈交界处开窗、灯泡状病灶清除、打压植骨术,结合纳米晶胶原基骨和自体骨移植治疗早期ONFH临床效果满意,纳米晶胶原基骨有利于骨坏死的修复和重建,适于Ⅱ期ONFH的患者保存股骨头手术。展开更多
文摘This study aimed to utilize micro-computed tomography (micro-CT) analysis to compare new bone formation in rat calvarial defects using chitosan/fibroin-hydroxyapatite (CFB-HAP) or collagen (Bio-Gide) membranes. Fifty-four (54) rats were studied. A circular bony defect (8 mm diameter) was formed in the centre of the calvaria using a trephine bur. The CFB-HAP membrane was prepared by thermally induced phase separation. In the experimental group (n= 18), the CFB-HAP membrane was used to cover the bony defect, and in the control group (n= 18), a resorbable collagen membrane (Bio-Gide) was used. In the negative control group (n= 18), no membrane was used. In each group, six animals were euthanized at 2, 4 and 8 weeks after surgery. The specimens were then analysed using micro-CT. There were significant differences in bone volume (BV) and bone mineral density (BMD) (P〈O.05) between the negative control group and the membrane groups. However, there were no significant differences between the CFB-HAP group and the collagen group. We concluded that the CFB-HAP membrane has significant potential as a guided bone regeneration (GBR) membrane.
文摘The aim of the present study was to investigate and compare the bone formation capacity with three different grafts. Four millimeter segmental defects were created in adult rat tibias and were either left empty (control defects) or implanted with (1) nano-hydroxyapatite/collagen/PIA (nHAC/PIA) composite, (2) nHAC/ PIA composite added with bone marrow mesenchymal tem cells ( BMSCs ), ( 3 ) nHAC/ PIA composite added with bone morphogenetic protein 2 ( BMP- 2). Radiographs of the defects were taken weekly post-surgery. After 1 or 2 months, the rats were eathaaized. Histologic analyses were performed on the harvested tissue. nHAC/ PIA composite could enhance the repair of rat tibia segmental defects. Addition of BMSCs or BMP- 2 to nHAC/ PIA led to an increase in osteogenesis, nHAC/ PIA composite could be an Meal alternative bone-grafi material and it could also be used as an Meal carrier of BMSCs or BMP- 2.
基金the Fundamental Research Funds for the Central Universities,China(No.14D110519)Pujiang Talent Program Funded by the Science and Technology Commission of Shanghai Municipality,China(No.10PJ1400200)National Natural Science Foundation of China(No.51073032)
文摘Bone tissue engineering, aiming at developing bone substitutes for repair and regeneration of bone defects instead of using autologous bone grafts,has attracted wide attention in the field of tissue engineering and regenerative medicine.Developing biomimetic biomaterial scaffolds able to regulate osteogenic differentiation of stem cells could be a promising strategy to improve the therapeutic efficacy.In this study, electrospun composite nanofibers of hydroxyapatite / collagen / chitosan( HAp / Col / CTS)resembling the fibrous nanostructure and constituents of the hierarchically organized natural bone,were prepared to investigate their capacity for promoting bone mesenchymal stem cells( BMSCs)to differentiate into the osteogenic lineage in the absence and presence of the osteogenic supplementation, respectively.Cell morphology,proliferation and quantified specific osteogenic protein expression on the electrospun HAp / Col / CTS scaffolds were evaluated in comparison with different controls including electrospun nanofibrous CTS,HAp / CTS and tissue culture plate.Our results showed that the nanofibrous HAp / Col / CTS scaffolds supported better spreading and proliferation of the BMSCs than other substrates( P < 0.01).Expressions of osteogenesis protein markers,alkaline phosphatase( ALP) and Col,were significantly upregulated on the HAp / Col / CTS than those on the CTS( P < 0.01) and HAp /CTS( P < 0.05) scaffolds in the absence of the osteogenic supplementation.Moreover,presence of osteogenic supplementation also proved to enhance osteogenic differentiation of BMSCs on HAp /Col / CTS scaffolds, indicative of a synergistic effect.This study highlights the potential of BMSCs / HAp / Col / CTS cell-scaffold system for functional bone repair and regeneration applications.
文摘Purpose: Bone grafting is still requested to fill bone defects in traumatology, or after tumor removal, but also in orthopedic surgery for spine, arthroplasty revisions, and osteotomies. Due to the limitations of autografts and allografts, and the progress of biomaterial research, a large number of nonhuman bony scaffolds have been developed including synthetic calcium phosphates and highly processed xenografts. The most important parameters for bone ingrowth are the macroporosity of the scaffold with the suitable biological autologous cells and factors, optimal osteoinductive, osteointegrative and osteoconductive properties can be achieved. Methods and Results: The important factors regulating these properties are discussed in this paper, which also reports preclinical and clinical results obtained with such bone graft substitutes. Conclusions: Among different bone graft substitutes available, the porosity, the accessibility of pores, the internal surface exposed to the biological components of bone repair, are present in highly processed bovine hydroxyapatites. Compared to autografts, allografts and synthetic substitutes, they associate an initial conductivity, and a long term stability suitable for some orthopedic indications.
文摘Objective: To investigate the effect of nano hydroxyapatite/collagen (nHA/collagen) composite as a graft extender and enhancer when combined with recombinant human bone morphogenetic protein 2 (rhBMP 2) on lumbar intertransverse fusion in rabbits. Methods: Sixty four adult female New Zealand white rabbits, aged 1 year and weighing 3.5 4.5 kg, underwent similar posterolateral intertransverse process arthrodesis and were randomly divided into 4 groups based on different grafts: autogenous cancellous bone alone (ACB group), nHA/collagen alone (HAC group), half autogenous cancellous bone and half nHA/collagen (ACB+HAC group) and nHA/collagen combined with rhBMP 2 (HAC+BMP group). The fusion masses were analyzed by manual palpation, radiography, biomechanical testing and histological examination. Results: Fusion was observed in 4 cases in the 6th week and in 5 cases in the 10th week after surgery in ACB group. No case showed fusion in HAC group. In ACB+HAC group, there was fusion in 3 cases in the 6th week and in 4 cases in the 10th week after surgery. In HAC+BMP group, fusion in 1 case was found in the 4th week, in 5 cases in the 6th week and in 6 cases in the 10th week after surgery. It suggested that ACB, ACB+HAC and HAC+BMP groups showed similar fusion ratio and mechanical strength in the 6th and 10th week after surgery. According to the microstructure analysis of the samples, nHA/collagen had no negative effect when implanted together with ilium autograft. In HAC+BMP group, new bone like tissue was observed in the 2nd week postoperatively, and nearly all of the implanted composites were replaced by mature bone matrix and new bones in 10th week postoperatively. Conclusions: The nHA/collagen, especially combined with rhBMP 2, is a promising bone substitute, for it has quick biodegradation, fine bone bending ability, and high osteoconductivity on posterolateral spinal fusion in rabbits.
文摘Objective: To explore the method to repair bone defect with bone-morphogenetic-protein loaded hydroxyapatite/collagen-poly(L-lactic acid) composite. Methods: 18 adult beagle dogs were randomly divided into 3 groups. In Group A, bone-morphogenetic-protein (BMP) loaded hydroxyapatite/collagen-poly(L-lactic acid) (HAC-PLA) scaffold was implanted in a 2 cm diaphyseal defect in the radius. In Group B, unloaded pure HAC-PLA scaffold was implanted in the defects. No material was implanted in Group C (control group). The dogs were sacrificed 6 months postoperatively. Features of biocompatibility, biodegradability and osteoinduction were evaluated with histological, radiological examinations and bone mineral density (BMD) measurements. Results: In Group A, the radius defect healed after the treatment with BMP loaded HAC-PLA. BMD at the site of the defect was higher than that of the contralateral radius. Fibrous union developed in the animals of the control group. Conclusions: BMP not only promotes osteogenesis but also accelerates degradation of the biomaterials. Optimized design parameters of a three-dimensional porous biomaterial would give full scope to the role of BMP as an osteoinductive growth factor.
文摘In this research,bone cement was prepared by mixing 2 g of magnesium hydroxyapatite(laboratory synthesized),12 g of polymethyl methacrylate,4 g of methyl methacrylate,and collagen(1,3,and 6 g).The samples were molded in a circular shape.They were inspected by visual microscopy,FTIR,XRD,and FESEM.They were engrossed in synthesized simulated body fluid for 1 month and then inspected by visual microscopy,FTIR,XRD,and FESEM.The samples prepared from 6 g of collagen showed the highest hydroxyapatite formation(high osseointegration)than the other samples.
文摘Biomimetic collagen/hydroxyapatite scaffolds have been prepared by microwave assisted co-titration of phosphorous acid-containing collagen solution and calcium hydroxide-containing solution. The resultant scaffolds have been characterised with respect to their mechanical properties, composition and microstructures. It was observed that the in situ precipitation process could combine collagen fibril formation and hydroxyapatite (HAp) formation in one process step. Collagen fibrils guided hydroxyapatite precipitation to form bone-mimic collagen/hydroxyapatite composite containing both intrafibrillar and interfibrillar hydroxyapatites. The mineral phase was determined as low crystalline calcium-deficient hydroxyapatite with calcium to phosphorus ratio (Ca/P) of 1.4. The obtained 1% (collagen/HAp = 75/25) scaffold has a porosity of 72% and a mean pore size of 69.4 ~tm. The incorporation of hydroxyapatite into collagen matrix improved the mechanical modulus of the scaffold significantly. This could be attributed to hydroxyapatite crystallites in collagen fibrils which restricted the deformation of the collagen fibril network, and the load transfer of the collagen to the higher modulus mineral component of the composite.
文摘The macrophages mediated biodegradation of two biomaterials, collagen / hydroxylapatite (CHA) and beta-tricalcium phosphate ceramics (TCP), was studied in 24 male Kunming mice and 20 male C57BL / 6 mice with histopathologic, histochemical and ultrastructural observation. It was demonstrated that macrophages infiltrated after CHA, TCP were implanted. The macrophages could be differentiated from fibroblasts and the other infiltrated cells for special cellular profile and strong acid phosphatase activity. Morphologically, monocyte macrophages and infused multinuclear giant cell degraded CHA and TCP by phagocytosis and extracellular resorption. The carbonic anhydrase activity of macrophages was demonstrated by histochemical technique. It suggested that macrophages secreted H+ and accomplished the decalcification of calcium phosphate compound of CHA and TCP. We conclude that macrophages are the main mediating cells which degraded CHA and TCP intracellularly and extracellularly.
基金part supported by Research Fund for Jiangsu Provincial Commission of Health and Family Planning(H201559)Science and Technology Development Project of Lianyungang City(SH1412)the National Key R&D Program of China(2020YFC1107600).
文摘Curettage of benign bone tumor is a common cause for bone defect.For such bone defect repair,autogenous bone,allogeneic bone and traditional artificial bone graft substitutes have many disadvantages.In recent years,a biomimetic mineralized collagen(MC)with similar composition and microstructures to the natural bone matrix was developed and used for treating various bone defects.In this work,a retrospective study analyzed clinical outcomes of patients treated with curettage of benign bone tumors and bone grafting with MC,in comparison to another group treated with the same surgical method and autogenous bone.Lane-Sandhu X-ray score of the autogenous bone group was superior to the MC group at 1 month after the operation,but the two groups had no statistical difference at 6 and 12 months.The MC group was better in Musculoskeletal Tumor Society scoring at 1 and 6 months after the operation,and the two groups had no statistical difference at 12 month.Therefore,the MC performed not as good as autogenous bone in early stage of bone healing but achieved comparable outcomes in long-term follow-ups.Moreover,the MC has advantages in function recovery and avoided potential complications induced by harvesting autogenous bone.
文摘目的回顾性分析经股骨头颈交界处开窗、灯泡状病灶清除、打压植骨术结合纳米晶胶原基骨和自体骨移植治疗早期股骨头坏死(osteonecrosis of femoralhead,ONFH)的临床疗效。方法2001年1月-2005年7月,收治26例35髋ONFH患者。男16例,女10例;年龄19~54岁,平均33.5岁。病程12~36个月,平均18个月。ONFH病因:激素性15例22髋,酒精性10例12髋,特发性1例1髋。ARCO分期:ⅡB期6髋,ⅡC期16髋,ⅢA期9髋,ⅢB期3髋,ⅢC期1髋。Harris评分为(62.2±7.5)分。术中采用经股骨头颈交界处开窗、灯泡状病灶清除,按1∶1比例行纳米晶胶原基骨和自体骨移植治疗。结果患者术后切口均Ⅰ期愈合。术中2例髂骨取骨伤及股外侧皮神经,术后3~6个月神经支配区麻木症状自行缓解消失;2例术后3个月出现异位骨化并发症,未行特殊处理。患者均获随访,随访时间2~7年,平均3.5年。术后3个月患者植骨愈合。术后Harris评分为(85.1±16.2)分,与术前比较差异有统计学意义(P<0.001)。其中优15髋,良11髋,可5髋,差4髋。获差的4例患者均于随访期末行全髋关节置换术。影像学检查示5髋由术前ⅡC期进展至ⅢA期;余髋关节影像学表现稳定,ONFH分期无进展。结论经股骨头颈交界处开窗、灯泡状病灶清除、打压植骨术,结合纳米晶胶原基骨和自体骨移植治疗早期ONFH临床效果满意,纳米晶胶原基骨有利于骨坏死的修复和重建,适于Ⅱ期ONFH的患者保存股骨头手术。