In this work,we report a method of removing scattering induced retardance in polarization sensitive fnll field optical coherence tomography(PS-FFOCT).First,the Mueller matrix that describes its operation is derived.Th...In this work,we report a method of removing scattering induced retardance in polarization sensitive fnll field optical coherence tomography(PS-FFOCT).First,the Mueller matrix that describes its operation is derived.The thickness invariant retardance induced by the scattering of collagenous fiber bundles is then used to find the accurate values of the birefringence of the layers that consist collagenous fibers.Finally,the initial en face birefringent images of in vitro beef tendon samples are presented to demonstrate the capability of our method.展开更多
The capability of pulping for the solid waste of leather was investigated. The properties of paper that made up of collagenous fiber and plant fiber were also analyzed. The result showed that by proper treatment, soli...The capability of pulping for the solid waste of leather was investigated. The properties of paper that made up of collagenous fiber and plant fiber were also analyzed. The result showed that by proper treatment, solid waste of leather could be made into collagen fiber for papermaking. The physical strength of paper can be enhanced by appending collagenous fiber in a proper propriety.展开更多
Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and...Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and metastasis.However,conventional two-dimensional cell culture and animal models have limitations in studying the influence of tumor microenvironment on cancer cell migration.Fortunately,the further development of microfluidic technology has provided solutions for the study of such questions.We utilize microfluidic chip to build a random collagen fiber microenvironment(RFM)model and an oriented collagen fiber microenvironment(OFM)model that resemble early stage and late stage breast cancer microenvironments,respectively.By combining cell culture,biochemical concentration gradient construction,and microscopic imaging techniques,we investigate the impact of different collagen fiber biochemical microenvironments on the migration of breast cancer MDA-MB-231-RFP cells.The results show that MDA-MB-231-RFP cells migrate further in the OFM model compared to the RFM model,with significant differences observed.Furthermore,we establish concentration gradients of the anticancer drug paclitaxel in both the RFM and OFM models and find that paclitaxel significantly inhibits the migration of MDA-MB-231-RFP cells in the RFM model,with stronger inhibition on the high concentration side compared to the low concentration side.However,the inhibitory effect of paclitaxel on the migration of MDA-MB-231-RFP cells in the OFM model is weak.These findings suggest that the oriented collagen fiber microenvironment resembling the late-stage tumor microenvironment is more favorable for cancer cell migration and that the effectiveness of anticancer drugs is diminished.The RFM and OFM models constructed in this study not only provide a platform for studying the mechanism of cancer development,but also serve as a tool for the initial measurement of drug screening.展开更多
Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present si...Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present significant challenges.In this study,we report a CFM@UiO-66-NH_(2)membrane with high separation flux,efficiency and stability,through utilizing a robust anti-abrasion collagen fiber membrane(CFM)as the multifunctional support and UiO-66-NH_(2)by an in-situ growth as the separation layer.The high mechanical strength of the CFM compensated for the weakness of the separation layer,while the charge-breaking effect of UiO-66-NH_(2),along with the size sieving of its constituent separating layers and the capillary effect of the collagen fibers,contributed to the potential for efficient separation.Additionally,the CFM@UiO-66-NH_(2)membrane exhibited superhydrophilic properties,making it suitable for separating oil-in-water microemulsions and nanoemulsions stabilized by anionic surfactants.The membrane demonstrated remarkable separation efficiencies of up to 99.960%and a separation flux of370.05 L·m^(-2)·h^(-1).Moreover,it exhibits stability,durability,and abrasion resistance,maintaining excellent separation performance even when exposed to strong acids and alkalis without any damage to its structure and performance.After six cycles of reuse,it achieved a separation flux of 417.97 L·m^(-2)·h^(-1)and a separation efficiency of 99.747%.Furthermore,after undergoing 500 cycles of strong abrasion,the separation flux remained at 124.39 L·m^(-2)·h^(-1),with a separation efficiency of 99.992%.These properties make it suitable for the long-term use in harsh operating environments.We attribute these properties to the electrostatic effect resulting from the amino group on UiO-66-NH_(2)and its in-situ growth on the CFM,which forms a size-screening separation layer.Our work highlights the potential of the CFM@UiO-66-NH_(2)membrane as an environmentally friendly size-screening material for the efficient emulsion wastewater separation.展开更多
Background:Nutrient regulation has been proven to be an effective way to improve the flesh quality in fish.As a necessary nutrient for fish growth,protein accounts for the highest proportion in the fish diet and is ex...Background:Nutrient regulation has been proven to be an effective way to improve the flesh quality in fish.As a necessary nutrient for fish growth,protein accounts for the highest proportion in the fish diet and is expensive.Although our team found that the effect of protein on the muscle hardness of grass carp was probably related to an increased collagen content,the mechanism for this effect has not been deeply explored.Moreover,few studies have explored the protein requirements of sub-adult grass crap(Ctenopharyngodon idella).Therefore,the effects of different dietary protein levels on the growth performance,nutritional value,muscle hardness,muscle fiber growth,collagen metabolism and related molecule expression in grass carp were investigated.Methods:A total of 450 healthy grass carp(721.16±1.98 g)were selected and assigned randomly to six experimen-tal groups with three replicates each(n=25/replicate),and were fed six diets with 15.91%,19.39%,22.10%,25.59%,28.53%and 31.42%protein for 60 d.Results:Appropriate levels of dietary protein increased the feed intake,percentage weight gain,specific growth rate,body composition,unsaturated fatty acid content in muscle,partial free amino acid content in muscle,and muscle hardness of grass carp.These protein levels also increased the muscle fiber density,the frequency of new muscle fibers,the contents of collagen and IGF-1,and the enzyme activities of prolyl 4-hydroxylases and lysyloxidase,and decreased the activity of matrix metalloproteinase-2.At the molecular level,the optimal dietary protein increased col-lagen type Iα1(Colα1),Colα2,PI3K,Akt,S6K1,La ribonucleoprotein domain family member 6a(LARP6a),TGF-β1,Smad2,Smad4,Smad3,tissue inhibitor of metalloproteinase-2,MyoD,Myf5,MyoG and MyHC relative mRNA levels.The levels of the myostatin-1 and myostatin-2 genes were downregulated,and the protein expression levels of p-Smad2,Smad2,Smad4,p-Akt,Akt,LARP6 and Smad3 were increased.Conclusions:The appropriate levels of dietary protein promoted the growth of sub-adult grass carp and improved muscle hardness by promoting the growth of muscle fibers,improving collagen synthesis and depressing collagen degradation.In addition,the dietary protein requirements of sub-adult grass carp were 26.21%and 24.85%according to the quadratic regression analysis of growth performance(SGR)and the muscle hardness(collagen content),respectively.展开更多
The cervix is a collagen-rich connective tissue that must remain closed during pregnancy while undergoing progressive remodeling in preparation for delivery,which begins before the onset of the preterm labor process.T...The cervix is a collagen-rich connective tissue that must remain closed during pregnancy while undergoing progressive remodeling in preparation for delivery,which begins before the onset of the preterm labor process.Therefore,it is important to resolve the changes of collagen flbers during cervical remodeling for the prevention of preterm labor.Herein,we assessed the spatial organization of collagen flbers in a three-dimensional(3D)context within cervical tissues of mice on day 3,9,12,15 and 18 of gestation.We found that the 3D directional variance,a novel metric of alignment,was higher on day 9 than that on day 3 and then gradually decreased from day 9 to day 18.Compared with two-dimensional(2D)approach,a higher sensitivity was achieved from 3D analysis,highlighting the importance of truly 3D quantification.Moreover,the depthdependent variation of 3D directional variance was investigated.By combining multiple 3D directional variance-derived metrics,a high level of classification accuracy was acquired in distinguishing different periods of pregnancy.These results demonstrate that 3D directional variance is sensitive to remodeling of collagen fibers within cervical tissues,shedding new light on highly-sensitive,early detection of preterm birth(PTB).展开更多
为探究牦牛肺内纤维结构及其组成蛋白的增龄性变化,本研究采用Verhoeff’s Van Gieson(EVG)染色和网状纤维染色观察胶原纤维、弹性纤维及网状纤维在初生、幼年和成年牦牛肺组织中的分布情况;利用免疫组化、免疫荧光和蛋白免疫印迹对不...为探究牦牛肺内纤维结构及其组成蛋白的增龄性变化,本研究采用Verhoeff’s Van Gieson(EVG)染色和网状纤维染色观察胶原纤维、弹性纤维及网状纤维在初生、幼年和成年牦牛肺组织中的分布情况;利用免疫组化、免疫荧光和蛋白免疫印迹对不同年龄组牦牛肺组织中Ⅰ、Ⅲ、Ⅳ型胶原蛋白和弹性蛋白的分布特征及蛋白表达水平进行研究。结果显示,胶原纤维、网状纤维及三种胶原蛋白的分布位置基本一致,主要分布于牦牛肺脏支气管及血管外膜、软骨片、气管腺,支气管上皮细胞基膜、平滑肌层及肺泡隔也有较少量分布;而弹性蛋白及弹性纤维大量分布于支气管上皮细胞基膜、肺血管及肺泡隔中。四种蛋白的表达趋势基本一致,均在幼年组表达最高,初生组表达最低,且各年龄组间均差异显著(P<0.05)。结果表明,牦牛肺内弹性纤维、胶原纤维、网状纤维分布丰富,可使牦牛肺具有更好的收缩和舒张能力,有利于其对高寒缺氧环境的适应;Ⅰ、Ⅲ、Ⅳ型胶原蛋白和弹性蛋白表达量与年龄呈相关性,在幼年段表达最高,说明牦牛肺脏低氧适应性结构的形成在幼年段最为显著。本研究为进一步探究牦牛肺脏低氧适应结构提供了基础资料。展开更多
In the search for sustainable alternatives to harmful synthetic fibers,an increasing amount of research focuses on biomimicry and natural fibers.Sea silk is an exceptional textile material.It is a kind of natural silk...In the search for sustainable alternatives to harmful synthetic fibers,an increasing amount of research focuses on biomimicry and natural fibers.Sea silk is an exceptional textile material.It is a kind of natural silk produced using the long silky filaments secreted by a specific bivalve mollusk(Pinna nobilis);now at edge of extinction.This paper suggests a simple but effective way to prepare artificial sea silk from Mytilus edulis.A sea silk solution is prepared using a Mytilus edulis protein,and a polyvinyl alcohol(PVA)solution is mixed with the sea silk solution in order to produce artificial sea silk through a bubble electrospinning technique.The effects of the sea silk concentration on the nanofiber’s morphology and mechanical properties are studied experimentally.展开更多
Burn wound healing involves a complex sequence of processes. Recent studies have revealed that skin reinnervation may have an impact on physiological wound repair. Few studies have addressed the process of reinnervati...Burn wound healing involves a complex sequence of processes. Recent studies have revealed that skin reinnervation may have an impact on physiological wound repair. Few studies have addressed the process of reinnervation and morphological changes in regenerated nerve fibers. The regeneration of neurites during full-thickness burn wound healing was determined by immunofluorescent staining using an anti-neurofilament protein monoclonal antibody, and three-dimensional morphology was observed under a laser scanning confocal microscope. Morphology and the volume fraction of collagen and nerve fibers were measured. Skin reinnervation increased during wound healing, peaked during the proliferative scar stage, and then decreased to lower levels during the maturation period. The results from the skin nerve fibers correlated with those from collagen using semi-quantitative analysis. Disintegration and fragmentation were observed frequently in samples from the proliferative stage, and seldom occurred during the maturation stage. There was a remodeling process of regenerated nerve fibers during wound healing, which comprised changed innervation density and topical morphology. The mechanism of remodeling for nerve fibers requires further investigation.展开更多
基金This research was supported by the Fundamental Research Funds for the Central Universities(30920010003)the Natural Science Foundation of China(NSFC)(61275198,60978069).
文摘In this work,we report a method of removing scattering induced retardance in polarization sensitive fnll field optical coherence tomography(PS-FFOCT).First,the Mueller matrix that describes its operation is derived.The thickness invariant retardance induced by the scattering of collagenous fiber bundles is then used to find the accurate values of the birefringence of the layers that consist collagenous fibers.Finally,the initial en face birefringent images of in vitro beef tendon samples are presented to demonstrate the capability of our method.
文摘The capability of pulping for the solid waste of leather was investigated. The properties of paper that made up of collagenous fiber and plant fiber were also analyzed. The result showed that by proper treatment, solid waste of leather could be made into collagen fiber for papermaking. The physical strength of paper can be enhanced by appending collagenous fiber in a proper propriety.
基金support from the National Natural Science Foundation of China(Grant Nos.11974066,12174041,12104134,T2350007,and 12347178)the Fundamental and Advanced Research Program of Chongqing(Grant No.cstc2019jcyj-msxm X0477)+3 种基金the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQMSX1260)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202301333)the Scientific Research Fund of Chongqing University of Arts and Sciences(Grant Nos.R2023HH03 and P2022HH05)College Students’Innovation and Entrepreneurship Training Program of Chongqing Municipal(Grant No.S202310642002)。
文摘Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and metastasis.However,conventional two-dimensional cell culture and animal models have limitations in studying the influence of tumor microenvironment on cancer cell migration.Fortunately,the further development of microfluidic technology has provided solutions for the study of such questions.We utilize microfluidic chip to build a random collagen fiber microenvironment(RFM)model and an oriented collagen fiber microenvironment(OFM)model that resemble early stage and late stage breast cancer microenvironments,respectively.By combining cell culture,biochemical concentration gradient construction,and microscopic imaging techniques,we investigate the impact of different collagen fiber biochemical microenvironments on the migration of breast cancer MDA-MB-231-RFP cells.The results show that MDA-MB-231-RFP cells migrate further in the OFM model compared to the RFM model,with significant differences observed.Furthermore,we establish concentration gradients of the anticancer drug paclitaxel in both the RFM and OFM models and find that paclitaxel significantly inhibits the migration of MDA-MB-231-RFP cells in the RFM model,with stronger inhibition on the high concentration side compared to the low concentration side.However,the inhibitory effect of paclitaxel on the migration of MDA-MB-231-RFP cells in the OFM model is weak.These findings suggest that the oriented collagen fiber microenvironment resembling the late-stage tumor microenvironment is more favorable for cancer cell migration and that the effectiveness of anticancer drugs is diminished.The RFM and OFM models constructed in this study not only provide a platform for studying the mechanism of cancer development,but also serve as a tool for the initial measurement of drug screening.
基金supported by National Natural Science Foundation of China(22008035,22108040,22378066)Science and Technology Project of Environmental Protection in Fujian(2022R026)Natural Science Foundation of Fujian Province(2020J05131,2020J05130)。
文摘Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present significant challenges.In this study,we report a CFM@UiO-66-NH_(2)membrane with high separation flux,efficiency and stability,through utilizing a robust anti-abrasion collagen fiber membrane(CFM)as the multifunctional support and UiO-66-NH_(2)by an in-situ growth as the separation layer.The high mechanical strength of the CFM compensated for the weakness of the separation layer,while the charge-breaking effect of UiO-66-NH_(2),along with the size sieving of its constituent separating layers and the capillary effect of the collagen fibers,contributed to the potential for efficient separation.Additionally,the CFM@UiO-66-NH_(2)membrane exhibited superhydrophilic properties,making it suitable for separating oil-in-water microemulsions and nanoemulsions stabilized by anionic surfactants.The membrane demonstrated remarkable separation efficiencies of up to 99.960%and a separation flux of370.05 L·m^(-2)·h^(-1).Moreover,it exhibits stability,durability,and abrasion resistance,maintaining excellent separation performance even when exposed to strong acids and alkalis without any damage to its structure and performance.After six cycles of reuse,it achieved a separation flux of 417.97 L·m^(-2)·h^(-1)and a separation efficiency of 99.747%.Furthermore,after undergoing 500 cycles of strong abrasion,the separation flux remained at 124.39 L·m^(-2)·h^(-1),with a separation efficiency of 99.992%.These properties make it suitable for the long-term use in harsh operating environments.We attribute these properties to the electrostatic effect resulting from the amino group on UiO-66-NH_(2)and its in-situ growth on the CFM,which forms a size-screening separation layer.Our work highlights the potential of the CFM@UiO-66-NH_(2)membrane as an environmentally friendly size-screening material for the efficient emulsion wastewater separation.
基金supported by National Key R&D Program of China(2018YFD0900400,2019YFD0900200)National Natural Science Foundation of China for Outstanding Youth Science Foundation(31922086)+3 种基金National Nature Science Foundation of China(32172988)the Young Top-Notch Talent Support Program of National Ten-Thousand Talents Program,the Earmarked Fund for China Agriculture Research System(CARS-45)Outstanding Talents and Innovative Team of Agricultural Scientific Research(Ministry of Agriculture)Supported by Sichuan Science and Technology Program(2019YFN0036).
文摘Background:Nutrient regulation has been proven to be an effective way to improve the flesh quality in fish.As a necessary nutrient for fish growth,protein accounts for the highest proportion in the fish diet and is expensive.Although our team found that the effect of protein on the muscle hardness of grass carp was probably related to an increased collagen content,the mechanism for this effect has not been deeply explored.Moreover,few studies have explored the protein requirements of sub-adult grass crap(Ctenopharyngodon idella).Therefore,the effects of different dietary protein levels on the growth performance,nutritional value,muscle hardness,muscle fiber growth,collagen metabolism and related molecule expression in grass carp were investigated.Methods:A total of 450 healthy grass carp(721.16±1.98 g)were selected and assigned randomly to six experimen-tal groups with three replicates each(n=25/replicate),and were fed six diets with 15.91%,19.39%,22.10%,25.59%,28.53%and 31.42%protein for 60 d.Results:Appropriate levels of dietary protein increased the feed intake,percentage weight gain,specific growth rate,body composition,unsaturated fatty acid content in muscle,partial free amino acid content in muscle,and muscle hardness of grass carp.These protein levels also increased the muscle fiber density,the frequency of new muscle fibers,the contents of collagen and IGF-1,and the enzyme activities of prolyl 4-hydroxylases and lysyloxidase,and decreased the activity of matrix metalloproteinase-2.At the molecular level,the optimal dietary protein increased col-lagen type Iα1(Colα1),Colα2,PI3K,Akt,S6K1,La ribonucleoprotein domain family member 6a(LARP6a),TGF-β1,Smad2,Smad4,Smad3,tissue inhibitor of metalloproteinase-2,MyoD,Myf5,MyoG and MyHC relative mRNA levels.The levels of the myostatin-1 and myostatin-2 genes were downregulated,and the protein expression levels of p-Smad2,Smad2,Smad4,p-Akt,Akt,LARP6 and Smad3 were increased.Conclusions:The appropriate levels of dietary protein promoted the growth of sub-adult grass carp and improved muscle hardness by promoting the growth of muscle fibers,improving collagen synthesis and depressing collagen degradation.In addition,the dietary protein requirements of sub-adult grass carp were 26.21%and 24.85%according to the quadratic regression analysis of growth performance(SGR)and the muscle hardness(collagen content),respectively.
基金supported by the National Natural Science Foundation of China (61905214,62035011,11974310 and 31927801)National Key Research and Development Program of China (2019YFE0113700 and 2017YFA0700501)Natural Science Foundation of Zhejiang Province (LR20F050001).
文摘The cervix is a collagen-rich connective tissue that must remain closed during pregnancy while undergoing progressive remodeling in preparation for delivery,which begins before the onset of the preterm labor process.Therefore,it is important to resolve the changes of collagen flbers during cervical remodeling for the prevention of preterm labor.Herein,we assessed the spatial organization of collagen flbers in a three-dimensional(3D)context within cervical tissues of mice on day 3,9,12,15 and 18 of gestation.We found that the 3D directional variance,a novel metric of alignment,was higher on day 9 than that on day 3 and then gradually decreased from day 9 to day 18.Compared with two-dimensional(2D)approach,a higher sensitivity was achieved from 3D analysis,highlighting the importance of truly 3D quantification.Moreover,the depthdependent variation of 3D directional variance was investigated.By combining multiple 3D directional variance-derived metrics,a high level of classification accuracy was acquired in distinguishing different periods of pregnancy.These results demonstrate that 3D directional variance is sensitive to remodeling of collagen fibers within cervical tissues,shedding new light on highly-sensitive,early detection of preterm birth(PTB).
文摘为探究牦牛肺内纤维结构及其组成蛋白的增龄性变化,本研究采用Verhoeff’s Van Gieson(EVG)染色和网状纤维染色观察胶原纤维、弹性纤维及网状纤维在初生、幼年和成年牦牛肺组织中的分布情况;利用免疫组化、免疫荧光和蛋白免疫印迹对不同年龄组牦牛肺组织中Ⅰ、Ⅲ、Ⅳ型胶原蛋白和弹性蛋白的分布特征及蛋白表达水平进行研究。结果显示,胶原纤维、网状纤维及三种胶原蛋白的分布位置基本一致,主要分布于牦牛肺脏支气管及血管外膜、软骨片、气管腺,支气管上皮细胞基膜、平滑肌层及肺泡隔也有较少量分布;而弹性蛋白及弹性纤维大量分布于支气管上皮细胞基膜、肺血管及肺泡隔中。四种蛋白的表达趋势基本一致,均在幼年组表达最高,初生组表达最低,且各年龄组间均差异显著(P<0.05)。结果表明,牦牛肺内弹性纤维、胶原纤维、网状纤维分布丰富,可使牦牛肺具有更好的收缩和舒张能力,有利于其对高寒缺氧环境的适应;Ⅰ、Ⅲ、Ⅳ型胶原蛋白和弹性蛋白表达量与年龄呈相关性,在幼年段表达最高,说明牦牛肺脏低氧适应性结构的形成在幼年段最为显著。本研究为进一步探究牦牛肺脏低氧适应结构提供了基础资料。
基金the Foundation of Xi’an University of Architecture and Technology in 2020[Tian Dan]The Natural Science Foundation of Shaan Xi Province in 2019[2019JQ-755]the Natural Science Foundation of Shaanxi Provincial Department of Education in 2019[19JK0462].
文摘In the search for sustainable alternatives to harmful synthetic fibers,an increasing amount of research focuses on biomimicry and natural fibers.Sea silk is an exceptional textile material.It is a kind of natural silk produced using the long silky filaments secreted by a specific bivalve mollusk(Pinna nobilis);now at edge of extinction.This paper suggests a simple but effective way to prepare artificial sea silk from Mytilus edulis.A sea silk solution is prepared using a Mytilus edulis protein,and a polyvinyl alcohol(PVA)solution is mixed with the sea silk solution in order to produce artificial sea silk through a bubble electrospinning technique.The effects of the sea silk concentration on the nanofiber’s morphology and mechanical properties are studied experimentally.
基金the Natural Science Foundation of Shandong Province, No.Y2002C29
文摘Burn wound healing involves a complex sequence of processes. Recent studies have revealed that skin reinnervation may have an impact on physiological wound repair. Few studies have addressed the process of reinnervation and morphological changes in regenerated nerve fibers. The regeneration of neurites during full-thickness burn wound healing was determined by immunofluorescent staining using an anti-neurofilament protein monoclonal antibody, and three-dimensional morphology was observed under a laser scanning confocal microscope. Morphology and the volume fraction of collagen and nerve fibers were measured. Skin reinnervation increased during wound healing, peaked during the proliferative scar stage, and then decreased to lower levels during the maturation period. The results from the skin nerve fibers correlated with those from collagen using semi-quantitative analysis. Disintegration and fragmentation were observed frequently in samples from the proliferative stage, and seldom occurred during the maturation stage. There was a remodeling process of regenerated nerve fibers during wound healing, which comprised changed innervation density and topical morphology. The mechanism of remodeling for nerve fibers requires further investigation.