Collapsing gully erosion is a specific form of soil erosion types in the hilly granitic region of tropical and subtropical South China, and can result in extremely rapid water and soil loss. Knowledge of the soil phys...Collapsing gully erosion is a specific form of soil erosion types in the hilly granitic region of tropical and subtropical South China, and can result in extremely rapid water and soil loss. Knowledge of the soil physical and chemical properties of farmland influenced by collapsing gully erosion is important in understanding the development of soil quality. This study was conducted at the Wuli Watershed of the Tongcheng County, south of Hubei Province, China. The aim is to investigate soil physical and chemical properties of three soil layers (0-20, 20-40 and 40-60 cm) for two farmland types (paddy field and upland field) in three regions influenced by collapsing gully erosion. The three regions are described as follows: strongly influenced region (SIR), weakly influenced region (WIR) and non-influenced region (NIR). The results show that collapsing gully erosion significantly increased the soil gravel and sand content in paddy and upland fields, especially the surface soil in the SIR and WIR. In the 0-20 cm layer of the paddy field, the highest gravel content (250.94 g kg-1) was in the SIR and the lowest (78.67 g kg-1) was in the NIR, but in the upland filed, the surface soil (0-20 cm) of the SIR and the 40-60 cm soil layer for the NIR had the highest (177.13 g kg-1) and the lowest (59.96 g kg-1) values of gravel content, respectively. The distribution of gravel and sand decreased with depth in the three influenced regions, but silt and clay showed the inverse change. In the paddy field, the average of sand content decreased from 58.6 (in the SIR) to 49.0% (in the NIR), but the silt content was in a reverse order, increasing from 27.9 to 36.9%, and the average of the clay content of three regions showed no significant variation (P〈0.05). But in the upland filed, the sand, silt and clay fluctuated in the NIR and the WIR. Soils in the paddy and upland field were highly acidic (pH〈5.2) in the SIR and WIR; moreover lower nutrient contents (soil organic matter (SOM), total N and available N, P, K) existed in the SIR. In the 0-20 cm soil layer of the paddy field, compared with the NIR and the WIR, collapsing gully erosion caused a very sharp decrease in the SOM and total N of the SIR (5.23 and 0.56 g kg-1, respectively). But in the surface soil (0-20 cm) of the upland field, the highest SOM, total N, available N, available P and available K occurred in the NIR, and the lowest ones were in the SIR. Compared with the NIR, the cation exchange capacity (CEC) in the SIR and WIR was found to be relatively lower. These results suggest that collapsing gully erosion seriously affect the soil physical and chemical properties of farmland, lead to coarse particles accumulation in the field and decrease pH and nutrient levels.展开更多
Computational Fluid Dynamics (CFD) has become an alternative method to experiments for understanding the fluid dynamics of multiphase flow. A two-fluid model, which contains additional terms in both the gas- and sol...Computational Fluid Dynamics (CFD) has become an alternative method to experiments for understanding the fluid dynamics of multiphase flow. A two-fluid model, which contains additional terms in both the gas- and solid-phase momentum equations, is used to investigate the fluidization quality in a fluidized bed. A case study for quartz sand with a density of 2,660 kg/m^3 and a diameter of 500 μm, whose physical property is similar to a new kind of catalyst for producing clean fuels through the residue fluid catalytic cracking process, is simulated in a two-dimensional fluidized bed with 0.57 m width and 1.00 m height. Transient bubbling and collapsing characteristics are numerically investigated in the platform of CFX 4.4 by integrating user-defined Fortran subroutines. The results show that the fluidization and collapse process is in fair agreement with the classical theory of Geldart B classification, but the collapse time is affected by bubbles at the interface between the dense phase and freeboard.展开更多
The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which ma...The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which makes the numerical solution of ACA equations costly,especially for large-size problems.To speed-up the MOC transport iterations effectively for general geometry,a coarse-mesh ACA method that involves selectively merging fine-mesh cells with identical materials,called material-mesh ACA(MMACA),is presented.The energy group batching(EGB)strategy in the tracing process is proposed to increase the parallel efficiency for microscopic crosssection problems.Microscopic and macroscopic crosssection benchmark problems are used to validate and analyse the accuracy and efficiency of the MMACA method.The maximum errors in the multiplication factor and pin power distributions are from the VERA-4 B-2 D case with silver-indium-cadmium(AIC)control rods inserted and are 104 pcm and 1.97%,respectively.Compared with the single-thread ACA solution,the maximum speed-up ratio reached 25 on 12 CPU cores for microscopic cross-section VERA-4-2 D problem.For the C5 G7-2 D and LRA-2 D benchmarks,the MMACA method can reduce the computation time by approximately one half.The present work proposes the MMACA method and demonstrates its ability to effectively accelerate MOC transport iterations.展开更多
Collapsing focal segmental glomerulosclerosis (cFSGS), also known as collapsing glomerulopathy is currently classified under the rubric of FSGS. However, its de-fining morphological features are in stark contrast to...Collapsing focal segmental glomerulosclerosis (cFSGS), also known as collapsing glomerulopathy is currently classified under the rubric of FSGS. However, its de-fining morphological features are in stark contrast to those observed in most other variants of FSGS. During the early stage of the disease, the lesion is character-ized pathologically by an implosive segmental and/or global collapse of the glomerular capillary tufts, marked hypertrophy and hyperplasia of podocytes, and severe tubulointerstitial disease. With advancement of the disease, segmental and/or global glomerulosclerosis is also observed in association with the collapsing le-sions. The etiology of this enigmatic disorder is still elusive, but a growing list of diseases/conditions is being reported in association with this morphological pattern of renal parenchymal injury. The pathogenesis of cFSGS involves discreet epithelial cell injury leadingto cell cycle dysregulation and a proliferative cellularphenotype. From the clinical perspective, cFSGS is no-torious for its propensity to affect black people, a highincidence and severity of nephrotic syndrome, markedresistance to empirical therapy, and rapid progressionto end-stage renal disease. The lesion has also beenreported in transplanted kidneys either as recurrent orde novo disease, frequently leading to graft loss. Mostcases have been reported in western countries, but the lesion is also being increasingly recognized in the tropi-cal regions. The recent increase in reporting of cFSGS partly refects a true increase in the incidence and part-ly a detection bias. There is no specifc treatment for the disorder at present. Newer insights into the patho-genesis may lead to the development of targeted and specifc therapy in near future. There is an urgent need to increase awareness of the lesion among pathologists and nephrologists, especially those from developing countries, to ensure accurate diagnosis and appropriate managment. With the accumulation of more and more data, it is hoped that the prevailing confusion about the nosological identity of the lesion will also be resolved in a more logical way.展开更多
Although solitary waves with large ratio of wave height to water depth are difficult to produce in laboratory settings by traditional wave generating methods,a water column collapsing(WCC)method can be employed.This s...Although solitary waves with large ratio of wave height to water depth are difficult to produce in laboratory settings by traditional wave generating methods,a water column collapsing(WCC)method can be employed.This study uses the WCC method to produce large solitary waves and through a series of experiments,an empirical equation is developed that considers wave height and water depth in addition to water column height and depth.Generated solitary waves are studied through wavelet transforms.Results from this analysis demonstrate that the ratios between the initial lab-oratory-generated solitary wave and its theoretical counterpart range from 0.2−0.8.By using the results,a new solitary wave generating law is derived and can be applied to future solitary wave laboratory studies.展开更多
We study the dynamics of geometric quantum discord(GQD) between two qubits,each qubit interacting at the same time with K independent multiple bosonic reservoirs at zero temperature.In both weak and strong qubit-reser...We study the dynamics of geometric quantum discord(GQD) between two qubits,each qubit interacting at the same time with K independent multiple bosonic reservoirs at zero temperature.In both weak and strong qubit-reservoirs coupling regimes,we find that the increase of the number K of reservoirs can induce the damped oscillation of GQD,and enhance the memory effects of the overall environment.And the Hilbert-Schmidt norm GQD(two-norm GQD) is always smaller than the trace norm geometric quantum discord(one-norm GQD).Therefore,the one-norm GQD is a better way to measure the quantum correlation.Finally,we propose an effective strategy to improve GQD by using partially collapsing measurements,and we find that the protection effect is better with the increase of the weak measurement strength.展开更多
We put forth three modes of black hole formation, i.e. (1) A black hole kern forms initially inside the collapsing star. (2) The different mass shells of the collapsing star fulfils the Schwarzschild condition simulta...We put forth three modes of black hole formation, i.e. (1) A black hole kern forms initially inside the collapsing star. (2) The different mass shells of the collapsing star fulfils the Schwarzschild condition simultaneously. (3) Only the outmost mass shell of the collapsing star fulfils the Schwarzschild condition. We then calculate the entropy of the collapsing star for modes (1) and (3) and find that they are only 10-19 times the entropy of black hole. Modes (1) may be occure during the supernova explosions or galaxy explosions. Mode (3) may be occur in the formation of galactic black hole.展开更多
Objective To produce the antiserum of chicken brain derived neuron growth inhibitor collapsin 1. To detect its ability to neutralize the collapsing activity of collapsin 1. Methods The c myc epitope tagged ent...Objective To produce the antiserum of chicken brain derived neuron growth inhibitor collapsin 1. To detect its ability to neutralize the collapsing activity of collapsin 1. Methods The c myc epitope tagged entire sequence of collapsin 1 was amplified by PCR and expression cloned. Rabbits were immunized with the c myc tagged collapsin 1 to produce antiserum of collapsin 1. Its ability to neutralize the collapsing activity of collapsin 1 was observed in dorsal root ganglia (DRG) growth cone. Results Collapsin 1 could induce the collapse of DRG growth cone. The collapsing activity of collapsin 1 could be neutralized by the antiserum of collapsin 1. Conclusion We produced the antibody of a neuron growth inhibitor collapsin 1 that could block its inhibiting function.展开更多
Failure data from oilfield showed that casings which were designed according to API standards were deformed and collapsed in salt formations. The main reason for decrease in strength may be caused by non-uniform loadi...Failure data from oilfield showed that casings which were designed according to API standards were deformed and collapsed in salt formations. The main reason for decrease in strength may be caused by non-uniform loading(NUL) that was not considered in traditional casing collapsing strength design or that the designing method should be improved and developed. Obviously, the calculation of casing collapse strength is one of the key factors in casing design. However, the effect of NUL on casing collapse strength was generally neglected in the present computational methods. Therefore, a mechanical model which can calculate casing collapse strength under NUL was established based on the curved beam theory of the elasticity and was solved using displacement method. Simultaneously, three anti-collapse experiments were performed on C110 casing under NUL, and the strain and deformation laws of three casings in the process of collapse were obtained by the electrical method. Yield limit of every casing was obtained by analyzing those data. Experimental results are consistent with the results of calculation of new model. It indicates that the model can be used to calculate yield limit loading of casings under NUL.展开更多
The mechanism of ground vibration in building demolition blasting was investigated,taking into account the prevailing influential factors, including the building's heightof mass center, the quantity size, the stru...The mechanism of ground vibration in building demolition blasting was investigated,taking into account the prevailing influential factors, including the building's heightof mass center, the quantity size, the structural feature, the component material quantity,the demolition method, the geological structure of the region, earthquake resistance rank,as well as the earthquake wave dissemination.The proposed method was applied efficientlyto reduce the blasting effects on the environment, which enriches the control theoriesof vibration caused by collapse in the blasting process and may provide a good referencefor the related engineering practices.展开更多
Besides the cross sections of roadways and the tendency and obliquity of roadway axes, the major controlling factors affecting the height of a collapsing roof include the weak lithological structure of surrounding roc...Besides the cross sections of roadways and the tendency and obliquity of roadway axes, the major controlling factors affecting the height of a collapsing roof include the weak lithological structure of surrounding rocks. This thesis analyzes the effect of two single and weak lithological structures of both sides and the roof on the height of a collapsing roof in a deep soft rock road- way. Using the two-dimensional UDEC3.1 software, a numerical structures of both sides of a roadway and of two weak lithological simulation was carried out on the models of weak lithological structures of roof of different depths. We reconstruct the overall processes from a break-away layer, bending, subsidence and the cracking of a collapsing roof. We also illustrate the distribution characteristics of displacement fields in the surrounding rock after the roof collapse in a deep soft rock roadway. The results of our numerical simulations indicate that the form of a roof collapse is side-expanding when the roadway is a weak structure at both sides The height of the roof collapse is related to the lithological combination of the roof when the roadway is a weak structure of the roof.展开更多
In the framework of upper bound theorem of limit analysis, the progressive collapse of shallow rectangular tunnels with double-layer rock mass has been theoretically analyzed based on the three-dimensional (3D) veloci...In the framework of upper bound theorem of limit analysis, the progressive collapse of shallow rectangular tunnels with double-layer rock mass has been theoretically analyzed based on the three-dimensional (3D) velocity discontinuity surfaces. According to the virtual work principle, the difference theorem and the variation method, the collapse surface of double-layer rock mass is determined based on the Hoek-Brown failure criterion. The formula can be degenerated to a single-layer rock collapsing problem when the rock mass is homogeneous. To estimate the validity of the result, the numerical simulation software PLAXIS 3D is used to simulate the collapse of shallow tunnels with double-layer rock mass, and the comparative analysis shows that numerical results are in good agreement with upper-bound solutions. According to the results of parametric analysis, the potential range of collapse of a double-layer rock mass above a shallow cavity decreases with a decrease in A1/A2,σci1/σci2 and σtm1/σtm2 and an increase in B1/B2,γ1/γ2. The range will decrease with a decrease in support pressure q and increase with a decrease in surface overload σs. Therefore, reinforced supporting is beneficial to improve the stability of the cavity during actual construction.展开更多
Cavitation bubble collapse near rough solid wall is modeled by the multi-relaxation-time (MRT) pseudopotential lattice Boltzmann (LB) model. The modified forcing scheme, which can achieve LB model’s thermodynamic con...Cavitation bubble collapse near rough solid wall is modeled by the multi-relaxation-time (MRT) pseudopotential lattice Boltzmann (LB) model. The modified forcing scheme, which can achieve LB model’s thermodynamic consistency by tuning a parameter related with the particle interaction range, is adopted to achieve desired stability and density ratio. The bubble collapse near rough solid wall was simulated by the improved MRT pseudopotential LB model. The mechanism of bubble collapse is studied by investigating the bubble profiles, pressure field and velocity field evolution. The eroding effects of collapsing bubble are analyzed in details. It is found that the process and the effect of the interaction between bubble collapse and rough solid wall are affected seriously by the geometry of solid boundary. At the same time, it demonstrates that the MRT pseudopotential LB model is a potential tool for the investigation of the interaction mechanism between the collapsing bubble and complex geometry boundary.展开更多
We extend the static interior Schwarzschild solution to a collapsing model by applying geometrical methods. We examine the field quantities and field equations in the comoving and non-comoving observer systems. The co...We extend the static interior Schwarzschild solution to a collapsing model by applying geometrical methods. We examine the field quantities and field equations in the comoving and non-comoving observer systems. The collapsing stellar object contracts asymptotically to its minimum extent and needs an infinitely long time to arrive at the final state. The event horizon of the exterior Schwarzschild solution is not reached or even crossed. A geometric model of ECOs (eternally collapsing objects) is presented.展开更多
Implosive collapsing for spherical metal shells is a kind of dynamic compressing method, in which high pressure and high compression degree of materials can be attained. In present work, the dynamic process of implosi...Implosive collapsing for spherical metal shells is a kind of dynamic compressing method, in which high pressure and high compression degree of materials can be attained. In present work, the dynamic process of implosive collapsing for spherical metal shells was regard as spherical symmetry ideally, so one-dimensional spherical symmetric fluid dynamics conservation equations were established, and the finite difference schemes for solving these equations were given. An aluminum spherical shell was assumed, whose inner radius is 4cm and thickness is 2 cm. In numerical simulation, initial centripetal velocities (800, 1000 and 1200 m/s) were used to make aluminum spherical shell collapse. The simulation results show that during the process of implosive collapsing, the material exhibits a compression-expansion-compression pulsation process, and the internal pressure changes and distribution are consistent with the theoretical expectations. The simulation results can be used as a reference for relevant analysis.展开更多
Because various reasons, the tubing near wellhead was collapsed during well testing in high pressure and high temperature deep well when the outer pressure was less than collapsing strength. To find the reasons in the...Because various reasons, the tubing near wellhead was collapsed during well testing in high pressure and high temperature deep well when the outer pressure was less than collapsing strength. To find the reasons in the abnormally collapse and countermeasures, first the quality of the tubing was checked. It was founded that the collapse was not resulted from the defect of the tubing. Then, force and stress exerted in the tubing was analyzed taking XS2 well as an example. The analysis results were concluded as follows. The collapsing strength of tubing decreased due to the axial tensile, which is seriously at the upper tubing especially. During injecting, the additional axial force that was caused by the temperature effect increased the tubing near wellhead to suffer axial tensile and further reduced the collapsing strength of tubing near wellhead. Reinforcing defect, prohibiting defect tubing to trip in hole, according to the calculation to impose appropriate annular pressure, selecting size nozzle to reverse pumping and controlling the reverse pumping speed and pressure, prohibiting to be opened flow and reducing or releasing the annular pressure can prevent the well testing tubing down-hole being collapsed at the wellhead.展开更多
In the present paper,we study partial collapsing degeneration of Hamiltonian-perturbed Floer trajectories for an adiabatic ε-family and its reversal adiabatic gluing,as the prototype of the partial collapsing degener...In the present paper,we study partial collapsing degeneration of Hamiltonian-perturbed Floer trajectories for an adiabatic ε-family and its reversal adiabatic gluing,as the prototype of the partial collapsing degeneration of 2-dimensional(perturbed)J-holomorphic maps to 1-dimensional gradient segments.We consider the case when the Floer equations are S^(1)-invariant on parts of their domains whose adiabatic limit has positive length as ε→0,which we call thimble-flow-thimble configurations.The main gluing theorem we prove also applies to the case with Lagrangian boundaries such as in the problem of recovering holomorphic disks out of pearly configuration.In particular,our gluing theorem gives rise to a new direct proof of the chain isomorphism property between the Morse-Bott version of Lagrangian intersection Floer complex of L by Fukaya-Oh-Ohta-Ono and the pearly complex of L Lalonde and Biran-Cornea.It also provides another proof of the present authors’earlier proof of the isomorphism property of the PSS map without involving the target rescaling and the scale-dependent gluing.展开更多
Understanding the influence of collapsing gully management restoration on soil quality and function is essential to the protection of the regional ecological environment in the collapsing gully erosion area.The primar...Understanding the influence of collapsing gully management restoration on soil quality and function is essential to the protection of the regional ecological environment in the collapsing gully erosion area.The primary objective of this study was to construct soil quality index(SQI)to assess the influence of different vegetation restoration types on soil quality in collapsing gully restoration.The influence of five vegetation restoration types on soil properties was investigated by using a path analysis,a comprehensive soil quality index(SQI),and a general linear model(GLM).Vegetation restoration was shown to significantly increase the saturated hydraulic conductivity(Ks),mainly due to the effect of the physical parameters of bulk density,soil cohesion,and soil water content.Meanwhile,pH,Ks,soil organic matter(OM),and sand content were revealed as reasonable indicators to evaluate the influence of vegetation restoration on soil quality.Moreover,vegetation restoration was found to significantly improve the soil quality,with the highest SQI value for natural restoration mixed forest(NF),followed by replanted arboreal forest(RA)and replanted scrubland(RS),which were all significantly higher than the SQI value of the erosion area(EA)in the collapsing gully.Additionally,vegetation type explained the most substantial proportion of total variability(46.41%),and restoration time showed a positive correlation with SQI.The results of this study can provide a reference for the restoration and protection of the regional ecological environment in the collapsing gully area.展开更多
With the analysis of experiment and theory on GaN HEMT devices under DC sweep,an improved model for kink effect based on advanced SPICE model for high electron mobility transistors(ASM-HEMT)is pro⁃posed,considering th...With the analysis of experiment and theory on GaN HEMT devices under DC sweep,an improved model for kink effect based on advanced SPICE model for high electron mobility transistors(ASM-HEMT)is pro⁃posed,considering the relationship between the drain/gate-source voltage and kink effect.The improved model can not only accurately describe the trend of the drain-source current with the current collapse and kink effect,but also precisely fit different values of drain-source voltages at which the kink effect occurs under different gatesource voltages.Furthermore,it well characterizes the DC characteristics of GaN devices in the full operating range,with the fitting error less than 3%.To further verify the accuracy and convergence of the improved model,a load-pull system is built in ADS.The simulated result shows that although both the original ASM-HEMT and the improved model predict the output power for the maximum power matching of GaN devices well,the im⁃proved model predicts the power-added efficiency for the maximum efficiency matching more accurately,with 4%improved.展开更多
基金financially supported by the National Natural Science Foundation of China (41630858)
文摘Collapsing gully erosion is a specific form of soil erosion types in the hilly granitic region of tropical and subtropical South China, and can result in extremely rapid water and soil loss. Knowledge of the soil physical and chemical properties of farmland influenced by collapsing gully erosion is important in understanding the development of soil quality. This study was conducted at the Wuli Watershed of the Tongcheng County, south of Hubei Province, China. The aim is to investigate soil physical and chemical properties of three soil layers (0-20, 20-40 and 40-60 cm) for two farmland types (paddy field and upland field) in three regions influenced by collapsing gully erosion. The three regions are described as follows: strongly influenced region (SIR), weakly influenced region (WIR) and non-influenced region (NIR). The results show that collapsing gully erosion significantly increased the soil gravel and sand content in paddy and upland fields, especially the surface soil in the SIR and WIR. In the 0-20 cm layer of the paddy field, the highest gravel content (250.94 g kg-1) was in the SIR and the lowest (78.67 g kg-1) was in the NIR, but in the upland filed, the surface soil (0-20 cm) of the SIR and the 40-60 cm soil layer for the NIR had the highest (177.13 g kg-1) and the lowest (59.96 g kg-1) values of gravel content, respectively. The distribution of gravel and sand decreased with depth in the three influenced regions, but silt and clay showed the inverse change. In the paddy field, the average of sand content decreased from 58.6 (in the SIR) to 49.0% (in the NIR), but the silt content was in a reverse order, increasing from 27.9 to 36.9%, and the average of the clay content of three regions showed no significant variation (P〈0.05). But in the upland filed, the sand, silt and clay fluctuated in the NIR and the WIR. Soils in the paddy and upland field were highly acidic (pH〈5.2) in the SIR and WIR; moreover lower nutrient contents (soil organic matter (SOM), total N and available N, P, K) existed in the SIR. In the 0-20 cm soil layer of the paddy field, compared with the NIR and the WIR, collapsing gully erosion caused a very sharp decrease in the SOM and total N of the SIR (5.23 and 0.56 g kg-1, respectively). But in the surface soil (0-20 cm) of the upland field, the highest SOM, total N, available N, available P and available K occurred in the NIR, and the lowest ones were in the SIR. Compared with the NIR, the cation exchange capacity (CEC) in the SIR and WIR was found to be relatively lower. These results suggest that collapsing gully erosion seriously affect the soil physical and chemical properties of farmland, lead to coarse particles accumulation in the field and decrease pH and nutrient levels.
基金support from the Major State Basic Research Development Program of China (973 Program,2005CB221205)National Natural Science Foundation of China (No.20490200 and 20576076)
文摘Computational Fluid Dynamics (CFD) has become an alternative method to experiments for understanding the fluid dynamics of multiphase flow. A two-fluid model, which contains additional terms in both the gas- and solid-phase momentum equations, is used to investigate the fluidization quality in a fluidized bed. A case study for quartz sand with a density of 2,660 kg/m^3 and a diameter of 500 μm, whose physical property is similar to a new kind of catalyst for producing clean fuels through the residue fluid catalytic cracking process, is simulated in a two-dimensional fluidized bed with 0.57 m width and 1.00 m height. Transient bubbling and collapsing characteristics are numerically investigated in the platform of CFX 4.4 by integrating user-defined Fortran subroutines. The results show that the fluidization and collapse process is in fair agreement with the classical theory of Geldart B classification, but the collapse time is affected by bubbles at the interface between the dense phase and freeboard.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)the Frontier Science Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)。
文摘The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which makes the numerical solution of ACA equations costly,especially for large-size problems.To speed-up the MOC transport iterations effectively for general geometry,a coarse-mesh ACA method that involves selectively merging fine-mesh cells with identical materials,called material-mesh ACA(MMACA),is presented.The energy group batching(EGB)strategy in the tracing process is proposed to increase the parallel efficiency for microscopic crosssection problems.Microscopic and macroscopic crosssection benchmark problems are used to validate and analyse the accuracy and efficiency of the MMACA method.The maximum errors in the multiplication factor and pin power distributions are from the VERA-4 B-2 D case with silver-indium-cadmium(AIC)control rods inserted and are 104 pcm and 1.97%,respectively.Compared with the single-thread ACA solution,the maximum speed-up ratio reached 25 on 12 CPU cores for microscopic cross-section VERA-4-2 D problem.For the C5 G7-2 D and LRA-2 D benchmarks,the MMACA method can reduce the computation time by approximately one half.The present work proposes the MMACA method and demonstrates its ability to effectively accelerate MOC transport iterations.
文摘Collapsing focal segmental glomerulosclerosis (cFSGS), also known as collapsing glomerulopathy is currently classified under the rubric of FSGS. However, its de-fining morphological features are in stark contrast to those observed in most other variants of FSGS. During the early stage of the disease, the lesion is character-ized pathologically by an implosive segmental and/or global collapse of the glomerular capillary tufts, marked hypertrophy and hyperplasia of podocytes, and severe tubulointerstitial disease. With advancement of the disease, segmental and/or global glomerulosclerosis is also observed in association with the collapsing le-sions. The etiology of this enigmatic disorder is still elusive, but a growing list of diseases/conditions is being reported in association with this morphological pattern of renal parenchymal injury. The pathogenesis of cFSGS involves discreet epithelial cell injury leadingto cell cycle dysregulation and a proliferative cellularphenotype. From the clinical perspective, cFSGS is no-torious for its propensity to affect black people, a highincidence and severity of nephrotic syndrome, markedresistance to empirical therapy, and rapid progressionto end-stage renal disease. The lesion has also beenreported in transplanted kidneys either as recurrent orde novo disease, frequently leading to graft loss. Mostcases have been reported in western countries, but the lesion is also being increasingly recognized in the tropi-cal regions. The recent increase in reporting of cFSGS partly refects a true increase in the incidence and part-ly a detection bias. There is no specifc treatment for the disorder at present. Newer insights into the patho-genesis may lead to the development of targeted and specifc therapy in near future. There is an urgent need to increase awareness of the lesion among pathologists and nephrologists, especially those from developing countries, to ensure accurate diagnosis and appropriate managment. With the accumulation of more and more data, it is hoped that the prevailing confusion about the nosological identity of the lesion will also be resolved in a more logical way.
基金The work was financially supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0604100,2018YFA0605904 and 2021YFB2600702)the Nanjing Hydraulic Research Institute Special Fund for Basic Scientific Research of Central Public Research Institutes(Grant Nos.Y221017 and Y222004).
文摘Although solitary waves with large ratio of wave height to water depth are difficult to produce in laboratory settings by traditional wave generating methods,a water column collapsing(WCC)method can be employed.This study uses the WCC method to produce large solitary waves and through a series of experiments,an empirical equation is developed that considers wave height and water depth in addition to water column height and depth.Generated solitary waves are studied through wavelet transforms.Results from this analysis demonstrate that the ratios between the initial lab-oratory-generated solitary wave and its theoretical counterpart range from 0.2−0.8.By using the results,a new solitary wave generating law is derived and can be applied to future solitary wave laboratory studies.
基金Project supported by the National Natural Science Foundation of China(Grant No.11772177)。
文摘We study the dynamics of geometric quantum discord(GQD) between two qubits,each qubit interacting at the same time with K independent multiple bosonic reservoirs at zero temperature.In both weak and strong qubit-reservoirs coupling regimes,we find that the increase of the number K of reservoirs can induce the damped oscillation of GQD,and enhance the memory effects of the overall environment.And the Hilbert-Schmidt norm GQD(two-norm GQD) is always smaller than the trace norm geometric quantum discord(one-norm GQD).Therefore,the one-norm GQD is a better way to measure the quantum correlation.Finally,we propose an effective strategy to improve GQD by using partially collapsing measurements,and we find that the protection effect is better with the increase of the weak measurement strength.
文摘We put forth three modes of black hole formation, i.e. (1) A black hole kern forms initially inside the collapsing star. (2) The different mass shells of the collapsing star fulfils the Schwarzschild condition simultaneously. (3) Only the outmost mass shell of the collapsing star fulfils the Schwarzschild condition. We then calculate the entropy of the collapsing star for modes (1) and (3) and find that they are only 10-19 times the entropy of black hole. Modes (1) may be occure during the supernova explosions or galaxy explosions. Mode (3) may be occur in the formation of galactic black hole.
基金Thisprojectissupportedbythenaturalsciencefundofthenation (No 39840 0 11)andthatofJiangsuprovince (BK970 5 7)
文摘Objective To produce the antiserum of chicken brain derived neuron growth inhibitor collapsin 1. To detect its ability to neutralize the collapsing activity of collapsin 1. Methods The c myc epitope tagged entire sequence of collapsin 1 was amplified by PCR and expression cloned. Rabbits were immunized with the c myc tagged collapsin 1 to produce antiserum of collapsin 1. Its ability to neutralize the collapsing activity of collapsin 1 was observed in dorsal root ganglia (DRG) growth cone. Results Collapsin 1 could induce the collapse of DRG growth cone. The collapsing activity of collapsin 1 could be neutralized by the antiserum of collapsin 1. Conclusion We produced the antibody of a neuron growth inhibitor collapsin 1 that could block its inhibiting function.
基金Projects(51074135,51274170,51004084)supported by the National Natural Science Foundation of China
文摘Failure data from oilfield showed that casings which were designed according to API standards were deformed and collapsed in salt formations. The main reason for decrease in strength may be caused by non-uniform loading(NUL) that was not considered in traditional casing collapsing strength design or that the designing method should be improved and developed. Obviously, the calculation of casing collapse strength is one of the key factors in casing design. However, the effect of NUL on casing collapse strength was generally neglected in the present computational methods. Therefore, a mechanical model which can calculate casing collapse strength under NUL was established based on the curved beam theory of the elasticity and was solved using displacement method. Simultaneously, three anti-collapse experiments were performed on C110 casing under NUL, and the strain and deformation laws of three casings in the process of collapse were obtained by the electrical method. Yield limit of every casing was obtained by analyzing those data. Experimental results are consistent with the results of calculation of new model. It indicates that the model can be used to calculate yield limit loading of casings under NUL.
文摘The mechanism of ground vibration in building demolition blasting was investigated,taking into account the prevailing influential factors, including the building's heightof mass center, the quantity size, the structural feature, the component material quantity,the demolition method, the geological structure of the region, earthquake resistance rank,as well as the earthquake wave dissemination.The proposed method was applied efficientlyto reduce the blasting effects on the environment, which enriches the control theoriesof vibration caused by collapse in the blasting process and may provide a good referencefor the related engineering practices.
基金supported by the National Basic Research Program of China (No2006 CB202200)
文摘Besides the cross sections of roadways and the tendency and obliquity of roadway axes, the major controlling factors affecting the height of a collapsing roof include the weak lithological structure of surrounding rocks. This thesis analyzes the effect of two single and weak lithological structures of both sides and the roof on the height of a collapsing roof in a deep soft rock road- way. Using the two-dimensional UDEC3.1 software, a numerical structures of both sides of a roadway and of two weak lithological simulation was carried out on the models of weak lithological structures of roof of different depths. We reconstruct the overall processes from a break-away layer, bending, subsidence and the cracking of a collapsing roof. We also illustrate the distribution characteristics of displacement fields in the surrounding rock after the roof collapse in a deep soft rock roadway. The results of our numerical simulations indicate that the form of a roof collapse is side-expanding when the roadway is a weak structure at both sides The height of the roof collapse is related to the lithological combination of the roof when the roadway is a weak structure of the roof.
基金Projects(51478477,51878074)supported by the National Natural Science Foundation of ChinaProject(2017-123-033)supported by the Guizhou Provincial Department of Transportation Foundation,ChinaProjects(2018zzts663,2018zzts656)supported by the Fundamental Research Funds for the Central Universities,China
文摘In the framework of upper bound theorem of limit analysis, the progressive collapse of shallow rectangular tunnels with double-layer rock mass has been theoretically analyzed based on the three-dimensional (3D) velocity discontinuity surfaces. According to the virtual work principle, the difference theorem and the variation method, the collapse surface of double-layer rock mass is determined based on the Hoek-Brown failure criterion. The formula can be degenerated to a single-layer rock collapsing problem when the rock mass is homogeneous. To estimate the validity of the result, the numerical simulation software PLAXIS 3D is used to simulate the collapse of shallow tunnels with double-layer rock mass, and the comparative analysis shows that numerical results are in good agreement with upper-bound solutions. According to the results of parametric analysis, the potential range of collapse of a double-layer rock mass above a shallow cavity decreases with a decrease in A1/A2,σci1/σci2 and σtm1/σtm2 and an increase in B1/B2,γ1/γ2. The range will decrease with a decrease in support pressure q and increase with a decrease in surface overload σs. Therefore, reinforced supporting is beneficial to improve the stability of the cavity during actual construction.
文摘Cavitation bubble collapse near rough solid wall is modeled by the multi-relaxation-time (MRT) pseudopotential lattice Boltzmann (LB) model. The modified forcing scheme, which can achieve LB model’s thermodynamic consistency by tuning a parameter related with the particle interaction range, is adopted to achieve desired stability and density ratio. The bubble collapse near rough solid wall was simulated by the improved MRT pseudopotential LB model. The mechanism of bubble collapse is studied by investigating the bubble profiles, pressure field and velocity field evolution. The eroding effects of collapsing bubble are analyzed in details. It is found that the process and the effect of the interaction between bubble collapse and rough solid wall are affected seriously by the geometry of solid boundary. At the same time, it demonstrates that the MRT pseudopotential LB model is a potential tool for the investigation of the interaction mechanism between the collapsing bubble and complex geometry boundary.
文摘We extend the static interior Schwarzschild solution to a collapsing model by applying geometrical methods. We examine the field quantities and field equations in the comoving and non-comoving observer systems. The collapsing stellar object contracts asymptotically to its minimum extent and needs an infinitely long time to arrive at the final state. The event horizon of the exterior Schwarzschild solution is not reached or even crossed. A geometric model of ECOs (eternally collapsing objects) is presented.
文摘Implosive collapsing for spherical metal shells is a kind of dynamic compressing method, in which high pressure and high compression degree of materials can be attained. In present work, the dynamic process of implosive collapsing for spherical metal shells was regard as spherical symmetry ideally, so one-dimensional spherical symmetric fluid dynamics conservation equations were established, and the finite difference schemes for solving these equations were given. An aluminum spherical shell was assumed, whose inner radius is 4cm and thickness is 2 cm. In numerical simulation, initial centripetal velocities (800, 1000 and 1200 m/s) were used to make aluminum spherical shell collapse. The simulation results show that during the process of implosive collapsing, the material exhibits a compression-expansion-compression pulsation process, and the internal pressure changes and distribution are consistent with the theoretical expectations. The simulation results can be used as a reference for relevant analysis.
文摘Because various reasons, the tubing near wellhead was collapsed during well testing in high pressure and high temperature deep well when the outer pressure was less than collapsing strength. To find the reasons in the abnormally collapse and countermeasures, first the quality of the tubing was checked. It was founded that the collapse was not resulted from the defect of the tubing. Then, force and stress exerted in the tubing was analyzed taking XS2 well as an example. The analysis results were concluded as follows. The collapsing strength of tubing decreased due to the axial tensile, which is seriously at the upper tubing especially. During injecting, the additional axial force that was caused by the temperature effect increased the tubing near wellhead to suffer axial tensile and further reduced the collapsing strength of tubing near wellhead. Reinforcing defect, prohibiting defect tubing to trip in hole, according to the calculation to impose appropriate annular pressure, selecting size nozzle to reverse pumping and controlling the reverse pumping speed and pressure, prohibiting to be opened flow and reducing or releasing the annular pressure can prevent the well testing tubing down-hole being collapsed at the wellhead.
文摘In the present paper,we study partial collapsing degeneration of Hamiltonian-perturbed Floer trajectories for an adiabatic ε-family and its reversal adiabatic gluing,as the prototype of the partial collapsing degeneration of 2-dimensional(perturbed)J-holomorphic maps to 1-dimensional gradient segments.We consider the case when the Floer equations are S^(1)-invariant on parts of their domains whose adiabatic limit has positive length as ε→0,which we call thimble-flow-thimble configurations.The main gluing theorem we prove also applies to the case with Lagrangian boundaries such as in the problem of recovering holomorphic disks out of pearly configuration.In particular,our gluing theorem gives rise to a new direct proof of the chain isomorphism property between the Morse-Bott version of Lagrangian intersection Floer complex of L by Fukaya-Oh-Ohta-Ono and the pearly complex of L Lalonde and Biran-Cornea.It also provides another proof of the present authors’earlier proof of the isomorphism property of the PSS map without involving the target rescaling and the scale-dependent gluing.
基金the National Natural Science Foundation of China(41630858)the National Key Research and Development Program of China(2017YFC0505404)the National Natural Science Foundation of China(41771304).
文摘Understanding the influence of collapsing gully management restoration on soil quality and function is essential to the protection of the regional ecological environment in the collapsing gully erosion area.The primary objective of this study was to construct soil quality index(SQI)to assess the influence of different vegetation restoration types on soil quality in collapsing gully restoration.The influence of five vegetation restoration types on soil properties was investigated by using a path analysis,a comprehensive soil quality index(SQI),and a general linear model(GLM).Vegetation restoration was shown to significantly increase the saturated hydraulic conductivity(Ks),mainly due to the effect of the physical parameters of bulk density,soil cohesion,and soil water content.Meanwhile,pH,Ks,soil organic matter(OM),and sand content were revealed as reasonable indicators to evaluate the influence of vegetation restoration on soil quality.Moreover,vegetation restoration was found to significantly improve the soil quality,with the highest SQI value for natural restoration mixed forest(NF),followed by replanted arboreal forest(RA)and replanted scrubland(RS),which were all significantly higher than the SQI value of the erosion area(EA)in the collapsing gully.Additionally,vegetation type explained the most substantial proportion of total variability(46.41%),and restoration time showed a positive correlation with SQI.The results of this study can provide a reference for the restoration and protection of the regional ecological environment in the collapsing gully area.
基金Supported by the National Key R&D Program of China(2022YFF0707800,2022YFF0707801)Primary Research&Development Plan of Jiangsu Province(BE2022070,BE2022070-2)。
文摘With the analysis of experiment and theory on GaN HEMT devices under DC sweep,an improved model for kink effect based on advanced SPICE model for high electron mobility transistors(ASM-HEMT)is pro⁃posed,considering the relationship between the drain/gate-source voltage and kink effect.The improved model can not only accurately describe the trend of the drain-source current with the current collapse and kink effect,but also precisely fit different values of drain-source voltages at which the kink effect occurs under different gatesource voltages.Furthermore,it well characterizes the DC characteristics of GaN devices in the full operating range,with the fitting error less than 3%.To further verify the accuracy and convergence of the improved model,a load-pull system is built in ADS.The simulated result shows that although both the original ASM-HEMT and the improved model predict the output power for the maximum power matching of GaN devices well,the im⁃proved model predicts the power-added efficiency for the maximum efficiency matching more accurately,with 4%improved.