In the reform process of the rural land property rights system,the incentive mechanism of the rural land property rights system has a crucial impact on the production activities of rural economic entities.Due to the d...In the reform process of the rural land property rights system,the incentive mechanism of the rural land property rights system has a crucial impact on the production activities of rural economic entities.Due to the different rights structures of the property rights system in different social and economic development stages,the land rights and interests enjoyed by rural economic subjects are different,and the degree of incentives for farmers is also different.This difference in incentives affects farmers investment in agricultural production factors,which in turn affects agricultural performance.This paper analyzes the incentive impacts of the structure of rural land property rights on the changes of farmers land rights and agricultural performance since the founding of the People s Republic of China,in order to further deepen the reform of the land system,protect the rights and interests of farmers,promote the modernization of agriculture and rural areas,and explore the realization form and operation mechanism of the rural collective land system in the new era.展开更多
The accurate assessment of soil properties is a crucial factor for composing and implementing reclamation plans. The main objective of this study was to evaluate soil chemical and physical properties and calculate the...The accurate assessment of soil properties is a crucial factor for composing and implementing reclamation plans. The main objective of this study was to evaluate soil chemical and physical properties and calculate the chemical and fertility index for assisting land reclamation in Toshka area. The Toshka area is located between latitudes 31°32'N and 31°36'N and longitudes 32°40'E and 32°60'E. GIS was used to select 16 sites. The results revealed the soil has undesirable characteristics. The soil pH ranged from slightly alkaline to moderately alkaline. Furthermore, it was characterized as saline (with a ECe of 4.65 - 11.45 dS⋅m<sup>−1</sup>) and moderately calcareous soil (with CaCO<sub>3</sub> at 11.85% - 17.20%). The soil had a low soil organic matter content which did not exceed 0.18%. The soil was dominated by a sandy loam texture (62.50%) followed by a sandy clay loam texture (18.75%). The bulk density, total soil porosity and saturated hydraulic conductivity values varied with 1.38 - 1.55 Mg⋅cm<sup>−3</sup>, 41.85% - 48.45% and 1.20 - 3.34 cm⋅h<sup>−1</sup>, respectively. The chemical index ranged from low to moderate quality. The correlations between the parameters osculated between negative and positive. Therefore, the soil may be reclaimed if the soil properties are improved and crop selection is optimized for this soil.展开更多
The reform of rural land property rights system can promote large-scale and intensive agricultural production,improve the quality of laborers,improve agricultural production efficiency,increase farmers'income,and ...The reform of rural land property rights system can promote large-scale and intensive agricultural production,improve the quality of laborers,improve agricultural production efficiency,increase farmers'income,and effectively promote the development of agricultural modernization.In the context of the reform of the"separation of three powers",the rural land property rights system still has problems in terms of ownership,use rights,disposal rights,and income rights,which affect the healthy development of agricultural modernization.In this situation,it is necessary to further clarify the subject of rural land ownership,thoroughly improve the right to use rural land,vigorously improve the right to dispose of rural land,effectively protect the right to benefit from rural land,and deeply promote the reform of the rural land property rights system in order to effectively promote the development of agricultural modernization.展开更多
In the Loess Plateau of China,land-use pattern is a major factor in controlling underlying biological processes.Additionally,the process of land-use pattern was accompanied by abandoned lands,potentially impacting soi...In the Loess Plateau of China,land-use pattern is a major factor in controlling underlying biological processes.Additionally,the process of land-use pattern was accompanied by abandoned lands,potentially impacting soil microbe.However,limited researches were conducted to study the impacts of land-use patterns on the diversity and community of soil microorganisms in this area.The study aimed to investigate soil microbial community diversity and composition using high-throughput deoxyribonucleic acid(DNA)sequencing under different land-use patterns(apricot tree land,apple tree land,peach tree land,corn land,and abandoned land).The results showed a substantial difference(P<0.050)in bacterial alpha-diversity and beta-diversity between abandoned land and other land-use patterns,with the exception of Shannon index.While fungal beta-diversity was not considerably impacted by land-use patterns,fungal alpha-diversity indices varied significantly.The relative abundance of Actinobacteriota(34.90%),Proteobacteria(20.65%),and Ascomycota(77.42%)varied in soils with different land-use patterns.Soil pH exerted a dominant impact on the soil bacterial communities'composition,whereas soil available phosphorus was the main factor shaping the soil fungal communities'composition.These findings suggest that variations in land-use pattern had resulted in changes to soil properties,subsequently impacting diversity and structure of microbial community in the Loess Plateau.Given the strong interdependence between soil and its microbiota,it is imperative to reclaim abandoned lands to maintain soil fertility and sustain its function,which will have significant ecological service implications,particularly with regards to soil conservation in ecologically vulnerable areas.展开更多
Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabin...Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land,China.We collected soil samples from five depth layers(0-20,20-40,40-60,60-80,and 80-100 cm)in the S.vulgaris plantation plots across four plantation ages(4,7,10,and 16 years)in November 2019,and assessed soil physical(soil bulk density,soil porosity,and soil particle size)and chemical(soil organic carbon(SOC),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),available potassium(AK),cation-exchange capacity(CEC),salinity,p H,and C/N ratio)properties.The results indicated that the soil predominantly consisted of sand particles(94.27%-99.67%),with the remainder being silt and clay.As plantation age increased,silt and very fine sand contents progressively rose.After 16 years of planting,there was a marked reduction in the mean soil particle size.The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement.Significant positive correlations were observed for the clay,silt,and very fine sand(mean diameter of 0.000-0.100 mm)with SOC,AK,and p H.In contrast,fine sand and medium sand(mean diameter of 0.100-0.500 mm)showed significant negative correlations with these indicators.Our findings ascertain that the plantation of S.vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation,and needs 16 years to improve soil physical and chemical properties.Importantly,these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas.This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China.展开更多
[Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered...[Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered by Artemisia ordosica, Salix cheilophila, Hedysarum scoparium, Populus simonii and Amorpha fruticosa, all of which were planted artificially at the same year were measured in the present study, using a bare soil as the control. [Result] Artificial vegetation improved the soil physicochemical properties by different extents in the lands covered by different plants. The soil physicochemical properties such as bulk density under A. Fruticosa and H. Scoparium were improved greatly. The frequency distribution of soil particle size under artificial vegetations exhibited a bimodal curve. The average soil particle size under A. fruticosa was the smallest, and the soil was very poorly sorted. The soil nutrients in the sandy land were not significantly improved by artificial vegeta- tion. [Conclusion] Artificial vegetation has a certain impact on soil properties in sandy land, as it greatly improves the soil physical properties but not the chemical properties.展开更多
The vast area of farmland was abandoned at downstream of the Shiyang River because of decreased water recourse. To ensure the ecological safety of Minqin Oasis and to provide management basis for the abandoned land, s...The vast area of farmland was abandoned at downstream of the Shiyang River because of decreased water recourse. To ensure the ecological safety of Minqin Oasis and to provide management basis for the abandoned land, soil physical properties were observed and studied. The authors analyzed land with abandonment time of 1 year, 2 years, 3 years, 4 years, 5 years, 8 years, 15 years, 24 years and 31 years. Samples were took at the 0-40 cm layer of soil to measure the bulk density, porosity and grain composition of soil in the different abandoned lands. Results showed that the tendency of clay content was decreasing, conversely, the fine sand increased at the layer of 0-10 cm of different abandoned lands.The changes of grain content reached a peak at the fourth year after the land was abandoned, then varied slightly. The variation of grain content of abandoned land was obvious with the extension of the abandonment year. The soil bulk density decreased and porosity increased with the extension of the abandonment year. The difference of porosity and soil bulk density at the range of 0-40 cm of different abandoned land decreased after the land abandoned for 3 years. The quality of soil was decreased, while the soil permeability was improved. The soil physical properties changed obviously in 3 to 4 years after abandonment, so it is the key time for land management.展开更多
Large areas of Artemisia ordosica Krasch., Caragana korshinskii Kom., and Caragana intermedia Kuang and H. C. Fu plantations were established on moving sand dunes in the Gonghe Basin (northeastern Tibetan Plateau) f...Large areas of Artemisia ordosica Krasch., Caragana korshinskii Kom., and Caragana intermedia Kuang and H. C. Fu plantations were established on moving sand dunes in the Gonghe Basin (northeastern Tibetan Plateau) for vegetation restoration. Elevating our understanding of the changes in soil characteristics after the establishment of different plantation types can be useful in the context of combating deserdfication. To assess the effects of these plantation types on the restoration of sandy land, we measured soil physical-chemical properties at four depths (0-5, 5-10, 10-20, and 20-50 cm) in each of the three plantation types and also in non-vegetated moving sand dunes (as control sites). Generally, the establishment of A. ordosica, C korshinskii and C intermedia plantations on sand dunes has greatly ameliorated soil quality in the Gonghe Basin. Specifically, relative to the moving sand dunes, shrub plantation has increased the silt and clay contents, total porosity and water holding capacity, soil organic matter, total nitrogen, total phosphorus and total potassium contents. The calculated soil quality index suggested that in the Gonghe Basin, C. intermedia is the best choice for soil amelioration. In all the three plantation types, soil amelioration mainly occurred in the shallow depths.展开更多
Supported by RS and GIS, the land use change from 1982 to 2003 were analyzed and the impacts of land use changes on pH value, organic matter, total N, total P, total K, available N, available P, and available K in soi...Supported by RS and GIS, the land use change from 1982 to 2003 were analyzed and the impacts of land use changes on pH value, organic matter, total N, total P, total K, available N, available P, and available K in soil of Xiaojiang watershed, a typical karst agricultural region of Yunnan Province, Southwest China were assessed. The following aspects are concluded. (1) The total land use converted during the past 20 years in Xiaojiang watershed covers an area of 610.12 km^2, of which 134.29 km^2 of forestland was converted into cultivated land, and 210 km^2 of.unused land was converted into cultivated land. (2) The rapid growth of population and the economic development were the main driving forces of land use change. (3) With the change in land use, the soil properties have been changed significantly. The pH, organic matter, total N, total P, total K, available N, available P and available K in soil in 1982 were 6.3, 38.02 g·kg^-1, 1.86 g·kg^-1, 1.63 g·kg^-1, 10.94 g·kg^-1, 114.42 g·kg^-1, 11.65 mg·kg^-1 and 64.69 mg·kg^-1g, respectively; and those in 2003 were 6.73, 25.26 g·kg^-1, 1.41 g·kg^-1, 0.99 g·kg^-1, 12.6 g·kg^-1, 113.43 mg·kg^-1, 11.11 mg·kg^-1 and 151.59 mg·kg^-1, respectively. Pared samples t-test of the tested indices of soil properties indicate that those indices have changed significantly during the last 20 years. But the soil properties changed differently, due to the differences in land use change. (4) Also, with the change in land use and management measures of soil, the modifications in soil properties which developed from carbonate rocks were more sensitive than those in the soil developed from sandstone.展开更多
The Horqin Sandy Land of northeastern China was originally a grassland with plenty of water and lush vegetation dominated by palatable grass species along with sparsely scattered woody species. However, it has experie...The Horqin Sandy Land of northeastern China was originally a grassland with plenty of water and lush vegetation dominated by palatable grass species along with sparsely scattered woody species. However, it has experienced severe desertification in recent decades due to its fragile ecology together with inappropriate human activities. Currently, the landscape of the Horqin Sandy Land is dominated by irrigated croplands and sand dunes with different degrees of vegetation cover, as the region has become the most important part of the semiarid agro-pastoral ecotone of northern China. In this study, we compared soil physical and chemical properties under different land-use and cover types (irrigated cropland, rainfed cropland, sandy grassland, fixed dunes, and mobile dunes). We found that soil particle size distribution; organic C, total N, and total mineral element, microelement, and available microelement and nutrient contents; pH; CEC; and bulk density differed significantly among the land-use and cover types. In general, soil quality was highest in the cropland, intermediate in the sandy grassland, and lowest in the dunes. The most important soil quality attribute, soil organic carbon (SOC) storage, decreased in the fol-lowing order: irrigated cropland (5,699 g/m^2) 〉 sandy grassland (3,390 g/m^2) 〉 rainfed cropland (2,411 g/m^2) 〉 fixed dunes (821 g/m^2) 〉 mobile dunes (463 g/m^2). SOC was significantly positively correlated with a large proportion of the other soil physico-chemical parameters. Our results suggest that the key issue in restoration of the degraded soils will be to increase SOC storage, which would also create a high potential for sequestering soil C in desertified areas of the Horqin Sandy Land.展开更多
The objective of this study is to analyze soil physical and chemical properties,soil comprehensive functions and impact factors after different years of reclamation.Based on the survey data taken from 216 soil samplin...The objective of this study is to analyze soil physical and chemical properties,soil comprehensive functions and impact factors after different years of reclamation.Based on the survey data taken from 216 soil sampling points in the Fengxian Reclamation Area of the Changjiang (Yangtze) River Estuary,China in April 2009 and remotely sensed TM data in 2006,while by virtue of multivariate analysis of variance (MANOVA),geo-statistical analysis (GA),prin-cipal component analysis (PCA) and canonical correspondence analysis (CCA),it was concluded that:1) With the in-crease in reclamation time,soil moisture,soil salinity,soil electric conductivity and soil particle size tended to decline,yet soil organic matter tended to increase.Soil available phosphorous tended to increase in the early reclamation period,yet it tended to decline after about 49 years of reclamation.Soil nitrate nitrogen,soil ammonia nitrogen and pH changed slightly in different reclamation years.Soil physical and chemical properties reached a steady state after about 30 years of reclamation.2) According to the results of PCA analysis,the weighted value (0.97 in total) that represents soil nutrient factors (soil nitrate nitrogen,soil organic matter,soil available phosphorous,soil ammonia nitrogen,pH and soil particle size) were higher than the weighted value (0.48 in total) of soil limiting factors (soil salinity,soil elec-tric conductivity and soil moisture).The higher the F value is,the better the soil quality is.3) Different land use types play different roles in the soil function maturity process,with farmlands providing the best contribution.4) Soil physi-cal and chemical properties in the reclamation area were mainly influenced by reclamation time,and then by land use types.The correlation (0.1905) of the composite index of soil function (F) with reclamation time was greater than that with land use types (-0.1161).展开更多
Land use change significantly influences soil properties. There is little information available on the long-term effects of post-reclamation from grassland to cropland on soil properties. We compared soil carbon (C)...Land use change significantly influences soil properties. There is little information available on the long-term effects of post-reclamation from grassland to cropland on soil properties. We compared soil carbon (C) and nitrogen (N) storage and related soil properties in a 50-year cultivation chronosequence of grassland in the agro-pastoral ecotone of Inner Mongolia. Field surveys on land use changes during the period of 1955-2002 were conducted to build a chronosequence of cropland of different ages since the conversion from grassland. The results showed that soil C and N storage, soil texture, and soil nutrient contents varied with land use types and cropland ages (P〈0.01). In the 0-30 cm soil layer, the soil organic carbon (SOC) density was significantly lower in the crop- lands (3.28 kg C/m2 for C50 soil) than in the grasslands (6.32 kg C/m2). After 5, 10, 15, 20, 35, and 50 years of crop planting (years since the onset of cultivation), the SOC losses were 17%, 12%, 19%, 47%, 46%, and 48%, respec- tively, compared with the grasslands. The soil total nitrogen (TN) density of the grasslands was 65 g N/m2, and TN density of the cropland soil was 35 g N/m2 after 50 years of crop planting. Both the SOC and TN densities could be quantitatively determined by a negative exponential function of cropland age (P〈0.0001, R2=0.8528; P〈0.0001, R2=0.9637). The dissolved organic carbon (DOC) content, pH value were decreased; and the soil bulk density and soil available potassium (AK) content, clay content, and sand content were increased since the conversion of grassland into cropland during the 50-year period. Our results show soil nutrients were higher in grassland than in cropland. The conversion of grasslands to croplands induced a loss of soil C storage and changes of related soil properties. The reclamation time of cultivated soil (cropland age) had significant effects on soil properties in the study area.展开更多
Land subsidence caused by underground coal mining is one of the most prominent environment problems in China. The reclamation of mining subsidence land with Yellow River sediment was considered to be feasible, but its...Land subsidence caused by underground coal mining is one of the most prominent environment problems in China. The reclamation of mining subsidence land with Yellow River sediment was considered to be feasible, but its effectiveness needs to be verified. An integrated reclamation technology with Yellow River sediment was evaluated using a comparison of actual crop production soil profile analysis in Jining City, China. The results indicated that reconstructed soil profile of the reclaimed farmland was less effective in retaining water and in supporting plant growth than that of the unaltered farmland. Some measures are proposed, such as reducing the drainage velocity to allow sedimentation and retention of the clay and silt, changing the techniques of filling the Yellow River sediment and increasing the organic matter content in the soil layers to improve the capacity to retain water in the reclaimed farmland.展开更多
In order to understand the effect of different land use on soil physics and nutrients properties of the debris flow bottomland, a case study at Daqing gully (in Xiaojiang Basin, Yunnan) was conducted in 2004. Soil s...In order to understand the effect of different land use on soil physics and nutrients properties of the debris flow bottomland, a case study at Daqing gully (in Xiaojiang Basin, Yunnan) was conducted in 2004. Soil samples were taken at depth of 0-10,10-20,20-40,40-60,60-80 cm under three land use patterns crop bottomland (CL), forest bottomland (FL), and barren bottomland(BL). The results showed that the developing bottomland to CL promoted soil toaccumulate total phosphorus (TP) and available phosphorus (AP), pH value transferred from neutral to alkalescency, and organic matter decreased significantly. Furthermore, the contents of total nitrogen (TN) and available nitrogen (AN) in CL were lower than that of FL and BL because the growth of crops consumed more nutrients in soil. The results also showed that the contents of TP, AP and available potassium (AK) in soil were positively correlated with soil particle.展开更多
Understanding the effect of human activities on the soil environment is fundamental to understanding global change and sustainable development. In the process of transformation of tropical rain forests and semiarid gr...Understanding the effect of human activities on the soil environment is fundamental to understanding global change and sustainable development. In the process of transformation of tropical rain forests and semiarid grasslands to farmlands, land degradation usually occurs. But the transformation of arid desert landscape to oasis is found to have quite different consequences. Taking an alluvial plain oasis in the north piedmont of the Tianshan Mountains as a case study, we investigate oasis soil properties related to different land-use systems during the transformation of arid desert to oases. Selected land-use systems con- sisted of an annual crop field less than 3 years old, annual crop field 3-6 years old, annual crop field more than 6 years old, perennial crop field less than 4 years old, perennial crop field of 4-6 years old, perennial crop field more than 6 years old, abandoned farmland more than 3 years old, woodland field more than 6 years old, ecological forestation field, natural shrubbery field, desert grass land, and saline or alkaline field. Different land-use systems affect significantly the distribution of sand, silt and clay. Sand content in oasis soil tends to decrease with cultivation years but silt and clay contents tend to be increased in the oasis soils. Soil fertility is higher in the land-use systems under strong human disturbance than under weak human disturbance. Oasis soil nutrients also tend to increase with cultivation years. Soils have a significantly lower salinity in the land-use systems under strong human disturbance than under weak human disturbance. Soil organic matter and nutrients of the annual and perennial crop systems in the oasis tend to increase with cultivation time with the oasis soil acting as a carbon sink. These results show that soils are not degraded and the soil quality is gradually improved under rational land use and scientific management patterns, including uniform exploitation of land resources, effective irrigation systems, sound drainage systems, balanced fertilizer application, crushed straw return to soil and transformation of annual crop fields to perennial ones.展开更多
A simple but realistic method for identifying nonlinear stiffness and damp-ing of an air-oil shock strut widely used in aircraft is developed.In the method a powerseries expansion is used to niodel the nonlinear dynam...A simple but realistic method for identifying nonlinear stiffness and damp-ing of an air-oil shock strut widely used in aircraft is developed.In the method a powerseries expansion is used to niodel the nonlinear dynamic properties of the strut. and after introducing new variables lhe nonlinear identitication problem can be reduced to alinear one with unknown linear paranieters. An unbiased, efficient and consistentestimator for the vector of the linear parameters is obtained under conditions of mini-mizing the sum of squared residuals which is assumed to be stationary and uncorrelatedwith the observed data.The order and the most effective independent variables in themodel are detennined by the criterion of residual series correlation infonnation entropyand the procedure of best subset regression, respectively. Experiinent demonstrates thatthe results are quite satisfactory, and the method developed is realistic, which can beused to study the dynamic properties of a strut in full detail.展开更多
In order to explore the regional variability of the effects of land use systems on soil properties, Shouyang County in Shanxi Province and Danling County in Sichuan Province of China were selected as the study areas. ...In order to explore the regional variability of the effects of land use systems on soil properties, Shouyang County in Shanxi Province and Danling County in Sichuan Province of China were selected as the study areas. Field soil samples of the four land use systems (natural forest, forest plantation, shrubland, and cropland) were collected, respectively, from the two areas. The general statistical tools were used to analyze soil data. The results showed that the influence of land use systems on soil properties was significant. In general, soils in slightly human-disturbed land use systems presented a higher fertility level than those in strongly human-disturbed land use systems in both areas. Furthermore, the impacts of the same land use systems on soil properties showed a distinct regional variability, and even in the same land use system, different farming systems and site management measures (such as irrigation, fertilization, and pesticides) could also lead to the regional heterogeneity in soil properties. The regional variability of land use effects on soil properties reveals the regional variability of the effects of human activities on environmental changes, and could explain the complex relationship between humans and the natural environment in certain ways.展开更多
Soil physical properties(SPP)are considered to be important indices that reflect soil structure,hydrological conditions and soil quality.It is of substantial interest to study the spatial distribution of SPP owing to ...Soil physical properties(SPP)are considered to be important indices that reflect soil structure,hydrological conditions and soil quality.It is of substantial interest to study the spatial distribution of SPP owing to the high spatial variability caused by land consolidation under various land restoration modes in excavated farmland in the loess hilly area of China.In our study,three land restoration modes were selected including natural restoration land(NR),alfalfa land(AL)and maize land(ML).Soil texture composition,including the contents of clay,silt and sand,field capacity(FC),saturated conductivity(Ks)and bulk density(BD)were determined using a multifractal analysis.SPP were found to possess variable characteristics,although land consolidation destroyed the soil structure and decreased the spatial autocorrelation.Furthermore,SPP varied with land restoration and could be illustrated by the multifractal parameters of D1,ΔD,ΔαandΔf in different modes of land restoration.Owing to multiple compaction from large machinery in the surface soil,soil particles were fine-grained and increased the spatial variability in soil texture composition under all the land restoration modes.Plough numbers and vegetative root characteristics had the most significant impacts on the improvement in SPP,which resulted in the best spatial distribution characteristics of SPP found in ML compared with those in AL and NR.In addition,compared with ML,Δαvalues of NR and AL were 4.9-and 3.0-fold that of FC,respectively,andΔαvalues of NR and AL were 2.3-and 1.5-fold higher than those of Ks,respectively.These results indicate that SPP can be rapidly improved by increasing plough numbers and planting vegetation types after land consolidation.Thus,we conclude that ML is an optimal land restoration mode that results in favorable conditions to rapidly improve SPP.展开更多
Taking Wuhan,Nanjing and Guangzhou as examples and using Logistic model and Moran index,this paper made a quantitative analysis on bribery characterization of developers in land market. It found that( i) bribery behav...Taking Wuhan,Nanjing and Guangzhou as examples and using Logistic model and Moran index,this paper made a quantitative analysis on bribery characterization of developers in land market. It found that( i) bribery behavior of developers is promoted by supply and demands;( ii) bribery behavior of developers takes on regional agglomeration and difference. It reached following conclusions:( i) under the influence of macro factors and micro factors,bribery behavior of developers is rational selection after full consideration of institutional environment and corporate strength,and is passive to a certain extent;( ii) bribery behavior of developers has certain spatial correlation,and the high-high correlation characteristic is most significant.展开更多
基金Supported by National Natural Science Foundation of China(41771565)Henan Provincial Government Decision-Making Research Bidding Project(2017B189).
文摘In the reform process of the rural land property rights system,the incentive mechanism of the rural land property rights system has a crucial impact on the production activities of rural economic entities.Due to the different rights structures of the property rights system in different social and economic development stages,the land rights and interests enjoyed by rural economic subjects are different,and the degree of incentives for farmers is also different.This difference in incentives affects farmers investment in agricultural production factors,which in turn affects agricultural performance.This paper analyzes the incentive impacts of the structure of rural land property rights on the changes of farmers land rights and agricultural performance since the founding of the People s Republic of China,in order to further deepen the reform of the land system,protect the rights and interests of farmers,promote the modernization of agriculture and rural areas,and explore the realization form and operation mechanism of the rural collective land system in the new era.
文摘The accurate assessment of soil properties is a crucial factor for composing and implementing reclamation plans. The main objective of this study was to evaluate soil chemical and physical properties and calculate the chemical and fertility index for assisting land reclamation in Toshka area. The Toshka area is located between latitudes 31°32'N and 31°36'N and longitudes 32°40'E and 32°60'E. GIS was used to select 16 sites. The results revealed the soil has undesirable characteristics. The soil pH ranged from slightly alkaline to moderately alkaline. Furthermore, it was characterized as saline (with a ECe of 4.65 - 11.45 dS⋅m<sup>−1</sup>) and moderately calcareous soil (with CaCO<sub>3</sub> at 11.85% - 17.20%). The soil had a low soil organic matter content which did not exceed 0.18%. The soil was dominated by a sandy loam texture (62.50%) followed by a sandy clay loam texture (18.75%). The bulk density, total soil porosity and saturated hydraulic conductivity values varied with 1.38 - 1.55 Mg⋅cm<sup>−3</sup>, 41.85% - 48.45% and 1.20 - 3.34 cm⋅h<sup>−1</sup>, respectively. The chemical index ranged from low to moderate quality. The correlations between the parameters osculated between negative and positive. Therefore, the soil may be reclaimed if the soil properties are improved and crop selection is optimized for this soil.
基金Supported by Sichuan Science and Technology Program,Project of Sichuan Provincial Department of Science and Technology"Research on the Long-term Mechanism of Risk of Return to Poverty and Resilience Governance in Tibet-related Areas of Sichuan under the Rural Revitalization Strategy"(2022JDR0081)Research Project of Sichuan Minzu College"Research on the Reform of Rural Land Property Rights System and the Development of Agricultural Modernization under the Strategy of Rural Revitalization"(XYZB19004SA).
文摘The reform of rural land property rights system can promote large-scale and intensive agricultural production,improve the quality of laborers,improve agricultural production efficiency,increase farmers'income,and effectively promote the development of agricultural modernization.In the context of the reform of the"separation of three powers",the rural land property rights system still has problems in terms of ownership,use rights,disposal rights,and income rights,which affect the healthy development of agricultural modernization.In this situation,it is necessary to further clarify the subject of rural land ownership,thoroughly improve the right to use rural land,vigorously improve the right to dispose of rural land,effectively protect the right to benefit from rural land,and deeply promote the reform of the rural land property rights system in order to effectively promote the development of agricultural modernization.
基金supported by the Science and Technology Planning Project of Gansu Province,China(23ZDKA017).
文摘In the Loess Plateau of China,land-use pattern is a major factor in controlling underlying biological processes.Additionally,the process of land-use pattern was accompanied by abandoned lands,potentially impacting soil microbe.However,limited researches were conducted to study the impacts of land-use patterns on the diversity and community of soil microorganisms in this area.The study aimed to investigate soil microbial community diversity and composition using high-throughput deoxyribonucleic acid(DNA)sequencing under different land-use patterns(apricot tree land,apple tree land,peach tree land,corn land,and abandoned land).The results showed a substantial difference(P<0.050)in bacterial alpha-diversity and beta-diversity between abandoned land and other land-use patterns,with the exception of Shannon index.While fungal beta-diversity was not considerably impacted by land-use patterns,fungal alpha-diversity indices varied significantly.The relative abundance of Actinobacteriota(34.90%),Proteobacteria(20.65%),and Ascomycota(77.42%)varied in soils with different land-use patterns.Soil pH exerted a dominant impact on the soil bacterial communities'composition,whereas soil available phosphorus was the main factor shaping the soil fungal communities'composition.These findings suggest that variations in land-use pattern had resulted in changes to soil properties,subsequently impacting diversity and structure of microbial community in the Loess Plateau.Given the strong interdependence between soil and its microbiota,it is imperative to reclaim abandoned lands to maintain soil fertility and sustain its function,which will have significant ecological service implications,particularly with regards to soil conservation in ecologically vulnerable areas.
基金funded by the National Natural Science Foundation of China(42171004)the Key Research and Development Program in Shaanxi Province,China(2021ZDLSF05-02)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0403)。
文摘Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land,China.We collected soil samples from five depth layers(0-20,20-40,40-60,60-80,and 80-100 cm)in the S.vulgaris plantation plots across four plantation ages(4,7,10,and 16 years)in November 2019,and assessed soil physical(soil bulk density,soil porosity,and soil particle size)and chemical(soil organic carbon(SOC),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),available potassium(AK),cation-exchange capacity(CEC),salinity,p H,and C/N ratio)properties.The results indicated that the soil predominantly consisted of sand particles(94.27%-99.67%),with the remainder being silt and clay.As plantation age increased,silt and very fine sand contents progressively rose.After 16 years of planting,there was a marked reduction in the mean soil particle size.The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement.Significant positive correlations were observed for the clay,silt,and very fine sand(mean diameter of 0.000-0.100 mm)with SOC,AK,and p H.In contrast,fine sand and medium sand(mean diameter of 0.100-0.500 mm)showed significant negative correlations with these indicators.Our findings ascertain that the plantation of S.vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation,and needs 16 years to improve soil physical and chemical properties.Importantly,these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas.This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China.
基金Supported by National Key Technology Research and Development Program during the 12th Five-year Plan Period(2012BAD16B0202)Special Fund for Forest Scientific Research in the Public Interest(201004018)~~
文摘[Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered by Artemisia ordosica, Salix cheilophila, Hedysarum scoparium, Populus simonii and Amorpha fruticosa, all of which were planted artificially at the same year were measured in the present study, using a bare soil as the control. [Result] Artificial vegetation improved the soil physicochemical properties by different extents in the lands covered by different plants. The soil physicochemical properties such as bulk density under A. Fruticosa and H. Scoparium were improved greatly. The frequency distribution of soil particle size under artificial vegetations exhibited a bimodal curve. The average soil particle size under A. fruticosa was the smallest, and the soil was very poorly sorted. The soil nutrients in the sandy land were not significantly improved by artificial vegeta- tion. [Conclusion] Artificial vegetation has a certain impact on soil properties in sandy land, as it greatly improves the soil physical properties but not the chemical properties.
基金Supported by National Natural Science Foundation of China"Research of soil system evolvement rule and its driving mechanism of abandoned farmland in the Middle and lower Shiyang River"(41161049)"Research of Dynamic Change and Ecological Effects of groundwater by Human intervention in downstream of the Shiyang River"(31260129)~~
文摘The vast area of farmland was abandoned at downstream of the Shiyang River because of decreased water recourse. To ensure the ecological safety of Minqin Oasis and to provide management basis for the abandoned land, soil physical properties were observed and studied. The authors analyzed land with abandonment time of 1 year, 2 years, 3 years, 4 years, 5 years, 8 years, 15 years, 24 years and 31 years. Samples were took at the 0-40 cm layer of soil to measure the bulk density, porosity and grain composition of soil in the different abandoned lands. Results showed that the tendency of clay content was decreasing, conversely, the fine sand increased at the layer of 0-10 cm of different abandoned lands.The changes of grain content reached a peak at the fourth year after the land was abandoned, then varied slightly. The variation of grain content of abandoned land was obvious with the extension of the abandonment year. The soil bulk density decreased and porosity increased with the extension of the abandonment year. The difference of porosity and soil bulk density at the range of 0-40 cm of different abandoned land decreased after the land abandoned for 3 years. The quality of soil was decreased, while the soil permeability was improved. The soil physical properties changed obviously in 3 to 4 years after abandonment, so it is the key time for land management.
基金supported by the Forestry Public Benefit Scientific Research Special Project of China(201504420)the National Science&Technology Pillar Program during the 12th Five-year Plan Period(2012BAD16B0102)
文摘Large areas of Artemisia ordosica Krasch., Caragana korshinskii Kom., and Caragana intermedia Kuang and H. C. Fu plantations were established on moving sand dunes in the Gonghe Basin (northeastern Tibetan Plateau) for vegetation restoration. Elevating our understanding of the changes in soil characteristics after the establishment of different plantation types can be useful in the context of combating deserdfication. To assess the effects of these plantation types on the restoration of sandy land, we measured soil physical-chemical properties at four depths (0-5, 5-10, 10-20, and 20-50 cm) in each of the three plantation types and also in non-vegetated moving sand dunes (as control sites). Generally, the establishment of A. ordosica, C korshinskii and C intermedia plantations on sand dunes has greatly ameliorated soil quality in the Gonghe Basin. Specifically, relative to the moving sand dunes, shrub plantation has increased the silt and clay contents, total porosity and water holding capacity, soil organic matter, total nitrogen, total phosphorus and total potassium contents. The calculated soil quality index suggested that in the Gonghe Basin, C. intermedia is the best choice for soil amelioration. In all the three plantation types, soil amelioration mainly occurred in the shallow depths.
基金The open foundation of physical geography of Southwest University, No.250-411109 Foundation of Science and Technology Committee of Chongqing, No.20027534+1 种基金 No.20048258 Project of Ministry of Land and Resources, No.200310400024
文摘Supported by RS and GIS, the land use change from 1982 to 2003 were analyzed and the impacts of land use changes on pH value, organic matter, total N, total P, total K, available N, available P, and available K in soil of Xiaojiang watershed, a typical karst agricultural region of Yunnan Province, Southwest China were assessed. The following aspects are concluded. (1) The total land use converted during the past 20 years in Xiaojiang watershed covers an area of 610.12 km^2, of which 134.29 km^2 of forestland was converted into cultivated land, and 210 km^2 of.unused land was converted into cultivated land. (2) The rapid growth of population and the economic development were the main driving forces of land use change. (3) With the change in land use, the soil properties have been changed significantly. The pH, organic matter, total N, total P, total K, available N, available P and available K in soil in 1982 were 6.3, 38.02 g·kg^-1, 1.86 g·kg^-1, 1.63 g·kg^-1, 10.94 g·kg^-1, 114.42 g·kg^-1, 11.65 mg·kg^-1 and 64.69 mg·kg^-1g, respectively; and those in 2003 were 6.73, 25.26 g·kg^-1, 1.41 g·kg^-1, 0.99 g·kg^-1, 12.6 g·kg^-1, 113.43 mg·kg^-1, 11.11 mg·kg^-1 and 151.59 mg·kg^-1, respectively. Pared samples t-test of the tested indices of soil properties indicate that those indices have changed significantly during the last 20 years. But the soil properties changed differently, due to the differences in land use change. (4) Also, with the change in land use and management measures of soil, the modifications in soil properties which developed from carbonate rocks were more sensitive than those in the soil developed from sandstone.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41271007, 31260089, and 31560161)the One Hundred Person Project of the Chinese Academy of Sciences (Y551821002)
文摘The Horqin Sandy Land of northeastern China was originally a grassland with plenty of water and lush vegetation dominated by palatable grass species along with sparsely scattered woody species. However, it has experienced severe desertification in recent decades due to its fragile ecology together with inappropriate human activities. Currently, the landscape of the Horqin Sandy Land is dominated by irrigated croplands and sand dunes with different degrees of vegetation cover, as the region has become the most important part of the semiarid agro-pastoral ecotone of northern China. In this study, we compared soil physical and chemical properties under different land-use and cover types (irrigated cropland, rainfed cropland, sandy grassland, fixed dunes, and mobile dunes). We found that soil particle size distribution; organic C, total N, and total mineral element, microelement, and available microelement and nutrient contents; pH; CEC; and bulk density differed significantly among the land-use and cover types. In general, soil quality was highest in the cropland, intermediate in the sandy grassland, and lowest in the dunes. The most important soil quality attribute, soil organic carbon (SOC) storage, decreased in the fol-lowing order: irrigated cropland (5,699 g/m^2) 〉 sandy grassland (3,390 g/m^2) 〉 rainfed cropland (2,411 g/m^2) 〉 fixed dunes (821 g/m^2) 〉 mobile dunes (463 g/m^2). SOC was significantly positively correlated with a large proportion of the other soil physico-chemical parameters. Our results suggest that the key issue in restoration of the degraded soils will be to increase SOC storage, which would also create a high potential for sequestering soil C in desertified areas of the Horqin Sandy Land.
基金Under the auspices of Ministry of Education,China (No.108148)State Key Laboratory of Urban and Regional Ecology (No.SKLURE2010-2-2)+2 种基金National Basic Research Program of China (No.2010CB951203)Key Research Program of Shanghai Science & Technology (No.08231200700,08231200702)111 Project,Ministry of Education,China (No.B08022)
文摘The objective of this study is to analyze soil physical and chemical properties,soil comprehensive functions and impact factors after different years of reclamation.Based on the survey data taken from 216 soil sampling points in the Fengxian Reclamation Area of the Changjiang (Yangtze) River Estuary,China in April 2009 and remotely sensed TM data in 2006,while by virtue of multivariate analysis of variance (MANOVA),geo-statistical analysis (GA),prin-cipal component analysis (PCA) and canonical correspondence analysis (CCA),it was concluded that:1) With the in-crease in reclamation time,soil moisture,soil salinity,soil electric conductivity and soil particle size tended to decline,yet soil organic matter tended to increase.Soil available phosphorous tended to increase in the early reclamation period,yet it tended to decline after about 49 years of reclamation.Soil nitrate nitrogen,soil ammonia nitrogen and pH changed slightly in different reclamation years.Soil physical and chemical properties reached a steady state after about 30 years of reclamation.2) According to the results of PCA analysis,the weighted value (0.97 in total) that represents soil nutrient factors (soil nitrate nitrogen,soil organic matter,soil available phosphorous,soil ammonia nitrogen,pH and soil particle size) were higher than the weighted value (0.48 in total) of soil limiting factors (soil salinity,soil elec-tric conductivity and soil moisture).The higher the F value is,the better the soil quality is.3) Different land use types play different roles in the soil function maturity process,with farmlands providing the best contribution.4) Soil physi-cal and chemical properties in the reclamation area were mainly influenced by reclamation time,and then by land use types.The correlation (0.1905) of the composite index of soil function (F) with reclamation time was greater than that with land use types (-0.1161).
基金funded by the National Natural Science Foundation of China(41165010)the State Key Basic Research and Development Plan of China(2007CB106806)the State Key Laboratory Fund of Institute of Atmospheric Physics,Chinese Academy of Sciences(LAPC-KF-2008-03)
文摘Land use change significantly influences soil properties. There is little information available on the long-term effects of post-reclamation from grassland to cropland on soil properties. We compared soil carbon (C) and nitrogen (N) storage and related soil properties in a 50-year cultivation chronosequence of grassland in the agro-pastoral ecotone of Inner Mongolia. Field surveys on land use changes during the period of 1955-2002 were conducted to build a chronosequence of cropland of different ages since the conversion from grassland. The results showed that soil C and N storage, soil texture, and soil nutrient contents varied with land use types and cropland ages (P〈0.01). In the 0-30 cm soil layer, the soil organic carbon (SOC) density was significantly lower in the crop- lands (3.28 kg C/m2 for C50 soil) than in the grasslands (6.32 kg C/m2). After 5, 10, 15, 20, 35, and 50 years of crop planting (years since the onset of cultivation), the SOC losses were 17%, 12%, 19%, 47%, 46%, and 48%, respec- tively, compared with the grasslands. The soil total nitrogen (TN) density of the grasslands was 65 g N/m2, and TN density of the cropland soil was 35 g N/m2 after 50 years of crop planting. Both the SOC and TN densities could be quantitatively determined by a negative exponential function of cropland age (P〈0.0001, R2=0.8528; P〈0.0001, R2=0.9637). The dissolved organic carbon (DOC) content, pH value were decreased; and the soil bulk density and soil available potassium (AK) content, clay content, and sand content were increased since the conversion of grassland into cropland during the 50-year period. Our results show soil nutrients were higher in grassland than in cropland. The conversion of grasslands to croplands induced a loss of soil C storage and changes of related soil properties. The reclamation time of cultivated soil (cropland age) had significant effects on soil properties in the study area.
基金This research was supported by National Key Technology Research and Development Program (2012BAC04B03) during the Twelfth Five-Year Plan Period and National Natural Science Foundation of China (Grant No. 41771542).
文摘Land subsidence caused by underground coal mining is one of the most prominent environment problems in China. The reclamation of mining subsidence land with Yellow River sediment was considered to be feasible, but its effectiveness needs to be verified. An integrated reclamation technology with Yellow River sediment was evaluated using a comparison of actual crop production soil profile analysis in Jining City, China. The results indicated that reconstructed soil profile of the reclaimed farmland was less effective in retaining water and in supporting plant growth than that of the unaltered farmland. Some measures are proposed, such as reducing the drainage velocity to allow sedimentation and retention of the clay and silt, changing the techniques of filling the Yellow River sediment and increasing the organic matter content in the soil layers to improve the capacity to retain water in the reclaimed farmland.
文摘In order to understand the effect of different land use on soil physics and nutrients properties of the debris flow bottomland, a case study at Daqing gully (in Xiaojiang Basin, Yunnan) was conducted in 2004. Soil samples were taken at depth of 0-10,10-20,20-40,40-60,60-80 cm under three land use patterns crop bottomland (CL), forest bottomland (FL), and barren bottomland(BL). The results showed that the developing bottomland to CL promoted soil toaccumulate total phosphorus (TP) and available phosphorus (AP), pH value transferred from neutral to alkalescency, and organic matter decreased significantly. Furthermore, the contents of total nitrogen (TN) and available nitrogen (AN) in CL were lower than that of FL and BL because the growth of crops consumed more nutrients in soil. The results also showed that the contents of TP, AP and available potassium (AK) in soil were positively correlated with soil particle.
基金National Natural Science Foundation of China, No.40671015, No.40711120200 Project of "Western Light of CAS" Related to Eastern Scholar, No.20051048 Acknowledgements We thank Prof. Ian Bishop for the help on improving English.
文摘Understanding the effect of human activities on the soil environment is fundamental to understanding global change and sustainable development. In the process of transformation of tropical rain forests and semiarid grasslands to farmlands, land degradation usually occurs. But the transformation of arid desert landscape to oasis is found to have quite different consequences. Taking an alluvial plain oasis in the north piedmont of the Tianshan Mountains as a case study, we investigate oasis soil properties related to different land-use systems during the transformation of arid desert to oases. Selected land-use systems con- sisted of an annual crop field less than 3 years old, annual crop field 3-6 years old, annual crop field more than 6 years old, perennial crop field less than 4 years old, perennial crop field of 4-6 years old, perennial crop field more than 6 years old, abandoned farmland more than 3 years old, woodland field more than 6 years old, ecological forestation field, natural shrubbery field, desert grass land, and saline or alkaline field. Different land-use systems affect significantly the distribution of sand, silt and clay. Sand content in oasis soil tends to decrease with cultivation years but silt and clay contents tend to be increased in the oasis soils. Soil fertility is higher in the land-use systems under strong human disturbance than under weak human disturbance. Oasis soil nutrients also tend to increase with cultivation years. Soils have a significantly lower salinity in the land-use systems under strong human disturbance than under weak human disturbance. Soil organic matter and nutrients of the annual and perennial crop systems in the oasis tend to increase with cultivation time with the oasis soil acting as a carbon sink. These results show that soils are not degraded and the soil quality is gradually improved under rational land use and scientific management patterns, including uniform exploitation of land resources, effective irrigation systems, sound drainage systems, balanced fertilizer application, crushed straw return to soil and transformation of annual crop fields to perennial ones.
文摘A simple but realistic method for identifying nonlinear stiffness and damp-ing of an air-oil shock strut widely used in aircraft is developed.In the method a powerseries expansion is used to niodel the nonlinear dynamic properties of the strut. and after introducing new variables lhe nonlinear identitication problem can be reduced to alinear one with unknown linear paranieters. An unbiased, efficient and consistentestimator for the vector of the linear parameters is obtained under conditions of mini-mizing the sum of squared residuals which is assumed to be stationary and uncorrelatedwith the observed data.The order and the most effective independent variables in themodel are detennined by the criterion of residual series correlation infonnation entropyand the procedure of best subset regression, respectively. Experiinent demonstrates thatthe results are quite satisfactory, and the method developed is realistic, which can beused to study the dynamic properties of a strut in full detail.
文摘In order to explore the regional variability of the effects of land use systems on soil properties, Shouyang County in Shanxi Province and Danling County in Sichuan Province of China were selected as the study areas. Field soil samples of the four land use systems (natural forest, forest plantation, shrubland, and cropland) were collected, respectively, from the two areas. The general statistical tools were used to analyze soil data. The results showed that the influence of land use systems on soil properties was significant. In general, soils in slightly human-disturbed land use systems presented a higher fertility level than those in strongly human-disturbed land use systems in both areas. Furthermore, the impacts of the same land use systems on soil properties showed a distinct regional variability, and even in the same land use system, different farming systems and site management measures (such as irrigation, fertilization, and pesticides) could also lead to the regional heterogeneity in soil properties. The regional variability of land use effects on soil properties reveals the regional variability of the effects of human activities on environmental changes, and could explain the complex relationship between humans and the natural environment in certain ways.
基金The study was funded by the National Key Research and Development Program of China(2017YFD0800502)the National Natural Science Foundation of China(41671510).
文摘Soil physical properties(SPP)are considered to be important indices that reflect soil structure,hydrological conditions and soil quality.It is of substantial interest to study the spatial distribution of SPP owing to the high spatial variability caused by land consolidation under various land restoration modes in excavated farmland in the loess hilly area of China.In our study,three land restoration modes were selected including natural restoration land(NR),alfalfa land(AL)and maize land(ML).Soil texture composition,including the contents of clay,silt and sand,field capacity(FC),saturated conductivity(Ks)and bulk density(BD)were determined using a multifractal analysis.SPP were found to possess variable characteristics,although land consolidation destroyed the soil structure and decreased the spatial autocorrelation.Furthermore,SPP varied with land restoration and could be illustrated by the multifractal parameters of D1,ΔD,ΔαandΔf in different modes of land restoration.Owing to multiple compaction from large machinery in the surface soil,soil particles were fine-grained and increased the spatial variability in soil texture composition under all the land restoration modes.Plough numbers and vegetative root characteristics had the most significant impacts on the improvement in SPP,which resulted in the best spatial distribution characteristics of SPP found in ML compared with those in AL and NR.In addition,compared with ML,Δαvalues of NR and AL were 4.9-and 3.0-fold that of FC,respectively,andΔαvalues of NR and AL were 2.3-and 1.5-fold higher than those of Ks,respectively.These results indicate that SPP can be rapidly improved by increasing plough numbers and planting vegetation types after land consolidation.Thus,we conclude that ML is an optimal land restoration mode that results in favorable conditions to rapidly improve SPP.
基金Supported by National Social Science Foundation of China"Empirical Study of Corruption Governance in Real Estate"(14BGL106)
文摘Taking Wuhan,Nanjing and Guangzhou as examples and using Logistic model and Moran index,this paper made a quantitative analysis on bribery characterization of developers in land market. It found that( i) bribery behavior of developers is promoted by supply and demands;( ii) bribery behavior of developers takes on regional agglomeration and difference. It reached following conclusions:( i) under the influence of macro factors and micro factors,bribery behavior of developers is rational selection after full consideration of institutional environment and corporate strength,and is passive to a certain extent;( ii) bribery behavior of developers has certain spatial correlation,and the high-high correlation characteristic is most significant.