Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffi...Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffic. Even though all vessels are equipped with modern navigation devices, the accidents are reported caused by various reasons and mainly by human factor according to investigation. We propose an effective and efficient composition collision risk calculation method for finding the collision probability and avoiding the collision between ships in possible collision situations. The proposed composition collision risk calculation method at ship's position using combination of fuzzy and fuzzy comprehensive evaluation methods. The algorithm is straightforward to implement and is shown to be effective in automatic ship handling for ships involved in complex navigation situations. Experiments are carried out with indigenous data and the results show the effectiveness of the proposed approach.展开更多
In this paper,a new method to calculate collision risk of air-routes,based on variable nominal separation,is proposed. The collision risk model of air-routes,based on the time variable and initial time interval variab...In this paper,a new method to calculate collision risk of air-routes,based on variable nominal separation,is proposed. The collision risk model of air-routes,based on the time variable and initial time interval variable,is given. Because the distance and the collision probability vary with time when the nominal relative speed between aircraft is not zero for a fixed initial time interval,the distance,the variable nominal separation,and the collision probability at any time can be expressed as functions of time and initial time interval. By the probabilistic theory,a model for calculating collision risk is acquired based on initial time interval distribution,flow rates,and the proportion of aircraft type. From the results of calculations,the collision risk can be characterized by the model when the nominal separation changes with time. As well the roles of parameters can be shown more readily.展开更多
With the advancement of Communication,Navigation and Surveillance(CNS)technolo-gies such as space-based Automatic Dependent Surveillance-Broadcast/Contract(ADS-B/C),large separation minima may be reduced in procedural...With the advancement of Communication,Navigation and Surveillance(CNS)technolo-gies such as space-based Automatic Dependent Surveillance-Broadcast/Contract(ADS-B/C),large separation minima may be reduced in procedural airspaces.It is of great significance to know the upper limit of the Reduced Separation Minima(RSM)for a procedural airspace and the corre-sponding consequences on collision risk with specifics of the advanced ADS-B and control interven-tion model.In this work,an interactive software is first developed for collision risk estimation.This software integrates the International Civil Aviation Organization(ICAO)collision risk models for lateral and longitudinal collision risk calculation for the Singapore procedural airspace.Results demonstrate that the lateral and longitudinal collision risk of Singapore procedural airspace with respect to current control procedures meets the ICAO Target Level of Safety(TLS)standard.Moreover,the feasibility of reducing the horizontal separations implemented in the Singapore pro-cedural airspace with respect to advanced CNS techniques is investigated.It is found that if advanced CNS technologies are applied,then the current 50-NM lateral and longitudinal separa-tion standards can be reduced to 22 NM(1 NM=1.825 km)and 20 NM,respectively,to meet the TLS standards based on current demand.A method is then devised to expand the traffic demand by p for p∈[10%,200%].It is found that the minimum lateral and longitudinal separa-tions can be reduced from 50 NM to be within the range of[23,31]NM,and 20 NM,respectively,for p∈[10%,200%],while the collision risk still meets the TLS standards.展开更多
There are standard procedures for collecting data on numbers of birds at sites being proposed for wind farm development and evaluating collision risk for each key species. However, methods do not work well for all spe...There are standard procedures for collecting data on numbers of birds at sites being proposed for wind farm development and evaluating collision risk for each key species. However, methods do not work well for all species. Where a local bird population is depleted, empirical data cannot provide estimates of likely collision mortality numbers if that population returns to satisfactory conservation status. Field survey methods are also inadequate for cryptic bird species. Both these problems can be important for evaluation of impacts of proposed wind farms on bird populations protected by the EU Birds Directive. We present an alternative method, based on energy constrained activity budgets and natural history, which permits assessment of likely collision numbers where empirical data are inadequate. Two case studies are presented where this approach has been successfully used to resolve disputed planning applications, one for a hen harrier population where numbers present are much below the population size at designation, and one for a cryptic species (greenshank). Our novel method helps reduce uncertainty in assessments constrained by difficulties in collecting suitable empirical data.展开更多
The identification of ship collision risks is an important element in maritime safety and management.The concept of the ship domain has also been studied and developed since it was proposed.Considering the existing tr...The identification of ship collision risks is an important element in maritime safety and management.The concept of the ship domain has also been studied and developed since it was proposed.Considering the existing trend that the ship domain is increasingly widely used in collision risk-related research,a new domain-oriented collision risk factor,i.e.,the current state of domain(CSD),is introduced in this paper,which can effectively reflect the current state and show a certain predictability of collision risk from the perspective of the ship domain.To further prove the rationality of the CSD,a series of different simulations consisting of three typical encounter scenarios were conducted,verifying the superiority of the proposed parameter.展开更多
A novel biased proportional navigation guidance (BPNG) law is proposed for the close approach phase, which aims to make the spacecraft rendezvous with the target in specific relative range and direction. Firstly, in...A novel biased proportional navigation guidance (BPNG) law is proposed for the close approach phase, which aims to make the spacecraft rendezvous with the target in specific relative range and direction. Firstly, in order to describe the special guidance requirements, the concept of zero effort miss vector is proposed and the dangerous area where there exists collision risk for safety consideration is defined. Secondly, the BPNG, which decouples the range control and direc- tion control, is designed in the line-of-sight (LOS) rotation coordinate system. The theoretical anal- ysis proves that BPNG meets guidance requirements quite well. Thirdly, for the consideration of fuel consumption, the optimal biased proportional navigation guidance (OBPNG) law is derived by solving the Schwartz inequality. Finally, simulation results show that BPNG is effective for the close approach with the ability of evading the dangerous area and OBPNG consumes less fuel compared with BPNG.展开更多
基金supported by ETRI through Maritime Safety & Maritime Traffic Management R&D Program of the MOF/KIMST (2009403, Development of Next Generation VTS for Maritime Safety)supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) (No. 2011-0015009)
文摘Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffic. Even though all vessels are equipped with modern navigation devices, the accidents are reported caused by various reasons and mainly by human factor according to investigation. We propose an effective and efficient composition collision risk calculation method for finding the collision probability and avoiding the collision between ships in possible collision situations. The proposed composition collision risk calculation method at ship's position using combination of fuzzy and fuzzy comprehensive evaluation methods. The algorithm is straightforward to implement and is shown to be effective in automatic ship handling for ships involved in complex navigation situations. Experiments are carried out with indigenous data and the results show the effectiveness of the proposed approach.
基金The National Natural Science Foundations(Nos. 60776813 and 60979018)the National Air Traffic Management Research Program ( GKG200802015)the NUAA Research Funding (NS2010184)
文摘In this paper,a new method to calculate collision risk of air-routes,based on variable nominal separation,is proposed. The collision risk model of air-routes,based on the time variable and initial time interval variable,is given. Because the distance and the collision probability vary with time when the nominal relative speed between aircraft is not zero for a fixed initial time interval,the distance,the variable nominal separation,and the collision probability at any time can be expressed as functions of time and initial time interval. By the probabilistic theory,a model for calculating collision risk is acquired based on initial time interval distribution,flow rates,and the proportion of aircraft type. From the results of calculations,the collision risk can be characterized by the model when the nominal separation changes with time. As well the roles of parameters can be shown more readily.
文摘With the advancement of Communication,Navigation and Surveillance(CNS)technolo-gies such as space-based Automatic Dependent Surveillance-Broadcast/Contract(ADS-B/C),large separation minima may be reduced in procedural airspaces.It is of great significance to know the upper limit of the Reduced Separation Minima(RSM)for a procedural airspace and the corre-sponding consequences on collision risk with specifics of the advanced ADS-B and control interven-tion model.In this work,an interactive software is first developed for collision risk estimation.This software integrates the International Civil Aviation Organization(ICAO)collision risk models for lateral and longitudinal collision risk calculation for the Singapore procedural airspace.Results demonstrate that the lateral and longitudinal collision risk of Singapore procedural airspace with respect to current control procedures meets the ICAO Target Level of Safety(TLS)standard.Moreover,the feasibility of reducing the horizontal separations implemented in the Singapore pro-cedural airspace with respect to advanced CNS techniques is investigated.It is found that if advanced CNS technologies are applied,then the current 50-NM lateral and longitudinal separa-tion standards can be reduced to 22 NM(1 NM=1.825 km)and 20 NM,respectively,to meet the TLS standards based on current demand.A method is then devised to expand the traffic demand by p for p∈[10%,200%].It is found that the minimum lateral and longitudinal separa-tions can be reduced from 50 NM to be within the range of[23,31]NM,and 20 NM,respectively,for p∈[10%,200%],while the collision risk still meets the TLS standards.
文摘There are standard procedures for collecting data on numbers of birds at sites being proposed for wind farm development and evaluating collision risk for each key species. However, methods do not work well for all species. Where a local bird population is depleted, empirical data cannot provide estimates of likely collision mortality numbers if that population returns to satisfactory conservation status. Field survey methods are also inadequate for cryptic bird species. Both these problems can be important for evaluation of impacts of proposed wind farms on bird populations protected by the EU Birds Directive. We present an alternative method, based on energy constrained activity budgets and natural history, which permits assessment of likely collision numbers where empirical data are inadequate. Two case studies are presented where this approach has been successfully used to resolve disputed planning applications, one for a hen harrier population where numbers present are much below the population size at designation, and one for a cryptic species (greenshank). Our novel method helps reduce uncertainty in assessments constrained by difficulties in collecting suitable empirical data.
基金The National Natural Science Foundation of China(Grant No.51909022)Natural Science Foundation of Liaoning Province(Grant No.2019-BS-024)+1 种基金Research Program of Maritime Safety Administration of China(Grant No.0706-14400004N010)the Fundamental Research Funds for the Central Universities(Grant No.3132019347).
文摘The identification of ship collision risks is an important element in maritime safety and management.The concept of the ship domain has also been studied and developed since it was proposed.Considering the existing trend that the ship domain is increasingly widely used in collision risk-related research,a new domain-oriented collision risk factor,i.e.,the current state of domain(CSD),is introduced in this paper,which can effectively reflect the current state and show a certain predictability of collision risk from the perspective of the ship domain.To further prove the rationality of the CSD,a series of different simulations consisting of three typical encounter scenarios were conducted,verifying the superiority of the proposed parameter.
基金co-supported by the National Natural Science Foundation of China(No.11372345)the National Basic Research Program of China(No.2013CB733100)
文摘A novel biased proportional navigation guidance (BPNG) law is proposed for the close approach phase, which aims to make the spacecraft rendezvous with the target in specific relative range and direction. Firstly, in order to describe the special guidance requirements, the concept of zero effort miss vector is proposed and the dangerous area where there exists collision risk for safety consideration is defined. Secondly, the BPNG, which decouples the range control and direc- tion control, is designed in the line-of-sight (LOS) rotation coordinate system. The theoretical anal- ysis proves that BPNG meets guidance requirements quite well. Thirdly, for the consideration of fuel consumption, the optimal biased proportional navigation guidance (OBPNG) law is derived by solving the Schwartz inequality. Finally, simulation results show that BPNG is effective for the close approach with the ability of evading the dangerous area and OBPNG consumes less fuel compared with BPNG.