Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffi...Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffic. Even though all vessels are equipped with modern navigation devices, the accidents are reported caused by various reasons and mainly by human factor according to investigation. We propose an effective and efficient composition collision risk calculation method for finding the collision probability and avoiding the collision between ships in possible collision situations. The proposed composition collision risk calculation method at ship's position using combination of fuzzy and fuzzy comprehensive evaluation methods. The algorithm is straightforward to implement and is shown to be effective in automatic ship handling for ships involved in complex navigation situations. Experiments are carried out with indigenous data and the results show the effectiveness of the proposed approach.展开更多
The 1.235 Ga ESE-trending Sudbury dyke swarm cuts Paleoproterozoic to Archean rocks,but at its SE end becomes deformed and metamorphosed by the;Ga Grenville orogen,a result of collision between Laurentia
Palladium oxide(PdOx)and cobalt oxide(Co3O4)are efficient catalysts for methane(CH4)combustion,and Pd‐doped Co3O4catalysts have been found to exhibit better catalytic activities,which suggest synergism between the tw...Palladium oxide(PdOx)and cobalt oxide(Co3O4)are efficient catalysts for methane(CH4)combustion,and Pd‐doped Co3O4catalysts have been found to exhibit better catalytic activities,which suggest synergism between the two components.We carried out first‐principles calculations at the PBE+U level to investigate the Pd‐doping effect on CH4reactivity over the Co3O4catalyst.Because of the structural complexity of the Pd‐doped Co3O4catalyst,we built Pd‐doped catalyst models using Co3O4(001)slabs with two different terminations and examined CH4reactivity over the possible Pd?O active sites.A low energy barrier of0.68eV was predicted for CH4dissociation over the more reactive Pd‐doped Co3O4(001)surface,which was much lower than the0.98and0.89eV that was predicted previously over the more reactive pure Co3O4(001)and(011)surfaces,respectively.Using a simple model,we predicted CH4reaction rates over the pure Co3O4(001)and(011)surfaces,and Co3O4(001)surfaces with different amounts of Pd dopant.Our theoretical results agree well with the available experimental data,which suggests a strong synergy between the Pd dopant and the Co3O4catalyst,and leads to a significant increase in CH4reaction rate.展开更多
The Eulerian-Eulerian framework was used in the numerical simulation of liquid hydrodynamics and particle motion in liquid-fluidized beds. The kinetic theory of granular flow, which accounts for the viscous drag influ...The Eulerian-Eulerian framework was used in the numerical simulation of liquid hydrodynamics and particle motion in liquid-fluidized beds. The kinetic theory of granular flow, which accounts for the viscous drag influence on the interstitial liquid phase, was used in combination with two-fluid models to simulate unsteady liquid-solid two-phase flows. We focus on local unsteady features predicted by the numerical models. The solid fraction power spectrum was analyzed. A typical flow pattern, such as core annular flow and particle back-mixing near the wall region of liquid-solid fluidized beds is obtained from this calculation. Effects of the restitution coefficient of particle-particle collisions on the distribution of granular pressure and temperature are discussed. Good agreement was achieved between the simulated results and experimental findings.展开更多
基金supported by ETRI through Maritime Safety & Maritime Traffic Management R&D Program of the MOF/KIMST (2009403, Development of Next Generation VTS for Maritime Safety)supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) (No. 2011-0015009)
文摘Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffic. Even though all vessels are equipped with modern navigation devices, the accidents are reported caused by various reasons and mainly by human factor according to investigation. We propose an effective and efficient composition collision risk calculation method for finding the collision probability and avoiding the collision between ships in possible collision situations. The proposed composition collision risk calculation method at ship's position using combination of fuzzy and fuzzy comprehensive evaluation methods. The algorithm is straightforward to implement and is shown to be effective in automatic ship handling for ships involved in complex navigation situations. Experiments are carried out with indigenous data and the results show the effectiveness of the proposed approach.
文摘The 1.235 Ga ESE-trending Sudbury dyke swarm cuts Paleoproterozoic to Archean rocks,but at its SE end becomes deformed and metamorphosed by the;Ga Grenville orogen,a result of collision between Laurentia
基金supported by the National Natural Science Foundation of China(21473233,21403277)the Energy Technologies Institute LLP,UK~~
文摘Palladium oxide(PdOx)and cobalt oxide(Co3O4)are efficient catalysts for methane(CH4)combustion,and Pd‐doped Co3O4catalysts have been found to exhibit better catalytic activities,which suggest synergism between the two components.We carried out first‐principles calculations at the PBE+U level to investigate the Pd‐doping effect on CH4reactivity over the Co3O4catalyst.Because of the structural complexity of the Pd‐doped Co3O4catalyst,we built Pd‐doped catalyst models using Co3O4(001)slabs with two different terminations and examined CH4reactivity over the possible Pd?O active sites.A low energy barrier of0.68eV was predicted for CH4dissociation over the more reactive Pd‐doped Co3O4(001)surface,which was much lower than the0.98and0.89eV that was predicted previously over the more reactive pure Co3O4(001)and(011)surfaces,respectively.Using a simple model,we predicted CH4reaction rates over the pure Co3O4(001)and(011)surfaces,and Co3O4(001)surfaces with different amounts of Pd dopant.Our theoretical results agree well with the available experimental data,which suggests a strong synergy between the Pd dopant and the Co3O4catalyst,and leads to a significant increase in CH4reaction rate.
文摘The Eulerian-Eulerian framework was used in the numerical simulation of liquid hydrodynamics and particle motion in liquid-fluidized beds. The kinetic theory of granular flow, which accounts for the viscous drag influence on the interstitial liquid phase, was used in combination with two-fluid models to simulate unsteady liquid-solid two-phase flows. We focus on local unsteady features predicted by the numerical models. The solid fraction power spectrum was analyzed. A typical flow pattern, such as core annular flow and particle back-mixing near the wall region of liquid-solid fluidized beds is obtained from this calculation. Effects of the restitution coefficient of particle-particle collisions on the distribution of granular pressure and temperature are discussed. Good agreement was achieved between the simulated results and experimental findings.