Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions ar...Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions are demagnetized,is found to have a two-layer structure:an inner EDR near the reconnection site and an outer EDR that is elongated to nearly 10 ion inertial lengths in the outflow direction.In the inner EDR,the speed of the electron outflow increases when the electrons move away from the X line.In the outer EDR,the speed of the electron outflow first increases and then decreases until the electrons reach the boundary of the outer EDR.In the boundary of the outer EDR,the magnetic field piles up and forms a depolarization front.From the perspective of the fluid,a force analysis on the formation of electron and ion outflows has also been investigated.Around the X line,the electrons are accelerated by the reconnection electric field in the out-of-plane direction.When the electrons move away from the X line,we find that the Lorentz force converts the direction of the accelerated electrons to the x direction,forming an electron outflow.Both electric field forces and electron gradient forces tend to drag the electron outflow.Ion acceleration along the x direction is caused by the Lorentz force,whereas the pressure gradient force tends to decelerate the ion outflow.Although these two terms are important,their effects on ions are almost offset.The Hall electric field force does positive work on ions and is not negligible.The ions are continuously accelerated,and the ion and electron outflow velocities are almost the same near the depolarization front.展开更多
Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magneti...Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magnetic reconnection,the diffusion region consists of two substructures: an electron diffusion region is embedded in an ion diffusion region,in which their scales are based on the electron and ion inertial lengths. In the ion diffusion region, ions are unfrozen in the magnetic fields while electrons are magnetized. The resulted Hall effect from the different motions between ions and electrons leads to the production of the in-plane currents, and then generates the quadrupolar structure of out-of-plane magnetic field. In the electron diffusion region, even electrons become unfrozen in the magnetic fields, and the reconnection electric field is contributed by the off-diagonal electron pressure terms in the generalized Ohm’s law. The reconnection rate is insensitive to the specific mechanism to break the frozen-in condition, and is on the order of 0.1. In recent years, the launching of Cluster, THEMIS, MMS, and other spacecraft has provided us opportunities to study collisionless magnetic reconnection in the Earth’s magnetosphere, and to verify and extend more insights on the standard model of collisionless magnetic reconnection. In this paper, we will review what we have learned beyond the standard model with the help of observations from these spacecraft as well as kinetic simulations.展开更多
The remarkable experimental progress in the studies of collisionless shockwave(CS) in laboratories employing highpower lasers is briefly reviewed. The results show that CS can be generated in laser-produced plasmas ...The remarkable experimental progress in the studies of collisionless shockwave(CS) in laboratories employing highpower lasers is briefly reviewed. The results show that CS can be generated in laser-produced plasmas due to the microturbulence associated with instabilities. CS is one of the most important astronomical phenomena. It has been found in supernova remnants(SNRs), Sun–Earth space, etc. This paper focuses on CS in ways relevant to SNRs. Laboratory astrophysics(LA), a new interdisciplinary frontier of astrophysics, plasma and laser physics, has developed rapidly in recent years. As an accessory to the astronomical observation, LA experimenters can closely study some astronomical events scaled-down to controllable phenomena.展开更多
A triple frequency capacitively coupled plasma (TF-CCP) has been considered to investigate the behavior of the sheath parameters. A self-consistent time-independent collisionless model has been developed. The sheath...A triple frequency capacitively coupled plasma (TF-CCP) has been considered to investigate the behavior of the sheath parameters. A self-consistent time-independent collisionless model has been developed. The sheath width and potential are calculated using the present model and compared with those calculated using a single-frequency (SF), a dual-frequency (DF) and a triple-frequency (TF) model for time independent collisionless cases. The sheath motion and sheath potential are found to be larger compared with those of SF and DF CCPs for an inhomogeneous sheath, and that of TF CCP for a homogeneous sheath. The effects of the source parameters, i.e., current magnitudes, frequencies and phase difference, on the sheath parameters are investigated. The sheath parameters show higher values at higher source currents whereas they decrease with the increase of excitation frequencies. It has also been found that, by the proper choice of source frequencies and phase differences, it is possible to adjust the energy of ions when they hit the electrode.展开更多
The equation of electromagnetic wave propagation through cold collisionless plasma can be reduced to the modified Kortweg-de Vries (mKdV) equation. Using a new technique, whose keys are the trial solution in terms o...The equation of electromagnetic wave propagation through cold collisionless plasma can be reduced to the modified Kortweg-de Vries (mKdV) equation. Using a new technique, whose keys are the trial solution in terms of the exponential function and the ideas of the like-terms' balance, some groups of accurate analytical solutions for this mKdV equation, such as solitary wave solutions, can be obtained. It is successfully shown that this method may be still valid for solving other nonlinear plasma equations.展开更多
Recently, perpendicular shocks have been generated in laboratory experiments by the interaction between a laser-produced supersonic plasma flow and a magnetized ambient plasma. Here, we explore the ion dynamics and th...Recently, perpendicular shocks have been generated in laboratory experiments by the interaction between a laser-produced supersonic plasma flow and a magnetized ambient plasma. Here, we explore the ion dynamics and the formation of such kinds of shock with a one-dimensional(1D)particle-in-cell simulation model using achievable parameters for laser experiments. A small part of the ambient ions is first reflected by the laser-driven piston. These piston-reflected ions interact with the upstream plasma and form a shock then. By analyzing the contribution of the electric force and the Lorentz force during the reflection, shock-reflected ions are found to be accelerated by two different mechanisms: shock drift acceleration and shock surfing acceleration,where shock drift acceleration is the dominant one. Very few ions are reflected twice by the shock and accelerated to a large velocity, implying that a more energetic population of ions can be observed in future experiments.展开更多
Magnetic reconnection is well known as an efficient mechanism for transferring magnetic energy into plasma energy.However,how the energy conversion and partition between different species is influenced by the shear an...Magnetic reconnection is well known as an efficient mechanism for transferring magnetic energy into plasma energy.However,how the energy conversion and partition between different species is influenced by the shear angle of the reconnecting magnetic component(i.e.,the guide field strength)is not well understood.Using 2.5-dimensional particle-in-cell simulations,we investigated the energy conversion in reconnection with different guide fields.We found that the overall energy conversion first decreases steeply and then increases slowly when the guide field increases fromB_(g)=0 toB_(g)=4.The increase in energy conversion in the large guide field regime is due to the electron energy gain through the perpendicular channelJ_(⊥)·E_(⊥).The overall energy conversion is predominantly contributed byJ_(⊥)·E_(⊥) rather thanJ||E||.We further find that energy conversion mainly occurs within the reconnection front and the flux pileup region.However,the contribution from the fore reconnection front becomes important in large guide field regimes(3<B_(g)≤4)because of the enhanced electron energy gain.展开更多
Astrophysical collisionless shocks are amazing phenomena in space and astrophysical plasmas, where supersonic flows generate electromagnetic fields through instabilities and particles can be accelerated to high energy...Astrophysical collisionless shocks are amazing phenomena in space and astrophysical plasmas, where supersonic flows generate electromagnetic fields through instabilities and particles can be accelerated to high energy cosmic rays. Until now, understanding these micro-processes is still a challenge despite rich astrophysical observation data have been obtained. Laboratory astrophysics, a new route to study the astrophysics, allows us to investigate them at similar extreme physical conditions in laboratory. Here we will review the recent progress of the collisionless shock experiments performed at SG-II laser facility in China. The evolution of the electrostatic shocks and Weibel-type/filamentation instabilities are observed. Inspired by the configurations of the counter-streaming plasma flows, we also carry out a novel plasma collider to generate energetic neutrons relevant to the astrophysical nuclear reactions.展开更多
The problem of dark matter in present astrophysics has been disputed for a long time and has not been solved yet. More and more evidence shoves that mostly the dark matter is probably not baryonic, but the collisionle...The problem of dark matter in present astrophysics has been disputed for a long time and has not been solved yet. More and more evidence shoves that mostly the dark matter is probably not baryonic, but the collisionless particles which only participate in the gravitational interaction. These collisionless particles can condense in any potential well and provide the 'missing mass'.展开更多
This work reveals an exploration of self-focusing of Hermite-cosine-Gaussian laser beam in a collisionless plasma under relativistic nonlinearity. Self-focusing along with self-trapping of Hermite-cosine-Gaussian lase...This work reveals an exploration of self-focusing of Hermite-cosine-Gaussian laser beam in a collisionless plasma under relativistic nonlinearity. Self-focusing along with self-trapping of Hermite-cosine-Gaussian laser beam are analyzed for different values of laser intensity, plasma density, and decentered parameters. Mathematical analysis displays that these parameters play a major role in achieving the stronger and earlier self-focusing. Further, a comparative study between self-focusing of Hermite-cosine-Gaussian laser beam with and without exponential density ramp profile is introduced. Plasma density transition with exponential profile is found to be more effective in order to have stronger self-focusing. The present analysis may lead to very useful applications in the field of efficient harmonic generation, laser driven fusion etc.展开更多
OBSERVATIONS and theoretical calculations show that a part of protons are reflected by theshock after the interaction between the solar wind and the quasi-perpendicular collisionlessshock with high Much number.These p...OBSERVATIONS and theoretical calculations show that a part of protons are reflected by theshock after the interaction between the solar wind and the quasi-perpendicular collisionlessshock with high Much number.These protons have large velocities in the direction per-pendicular to the magnetic field and move again towards the downstream of shock due to theeffect of gyration.Upon their second encounter with the shock,most of them are展开更多
The purpose of this study is to explore the second harmonic generation(SHG)of a high power Cosh-Gaussian beam in cold collisionless plasma.The ponderomotive force causes carrier redistribution from high field to low f...The purpose of this study is to explore the second harmonic generation(SHG)of a high power Cosh-Gaussian beam in cold collisionless plasma.The ponderomotive force causes carrier redistribution from high field to low field region in presence of a Cosh-Gaussian beam thereby producing density gradients in the transverse direction.The density gradients so produced the results in electron plasma wave(EPW)generation at the frequency of the input beam.The EPW interacts with the input beam resulting in the production of 2nd harmonics.WKB and paraxial approximations are employed for obtaining the 2nd order differential equation describing the behavior of the beam’s spot size against normalized distance.The impact of well-established laser-plasma parameters on the behavior of the beam’s spot size and SHG yield are also analyzed.The focusing behavior of the beam and SHG yield is enhanced with an increase in the density of plasma,the radius of the beam and the decentred parameter,and with a decrease in the intensity of the beam.The results of the current problem are really helpful for complete information of laser-plasma interaction physics.展开更多
The dynamical evolution of collisionless driven reconnection is investigated by using an electromagnetic particle simulation code in a microscopic open system.Strong in-plane electrostatic field is excited in the cent...The dynamical evolution of collisionless driven reconnection is investigated by using an electromagnetic particle simulation code in a microscopic open system.Strong in-plane electrostatic field is excited in the central region of current sheet under the influence of an external driving field.As a result of the amplification of unmagnetized meandering motion by the electrostatic field particle distribution function is modified from the shifted Maxwellian to an anisotropic one in the current sheet.An ion hole appears at the center of current sheet in the phase space,where distribution becomes two-peaked and no ions exist in low velocity region between two peaks.The strongmodification of distribution function leads to the generation of off-diagonal components of pressure tensor term,which is one of major causes to violate frozen-in constraint and trigger collisionless reconnection.展开更多
In collisionless reconnection,the magnetic field near the separatrix is stronger than that around the X-line,so an electron-beam can be formed and flows toward the X-line,which leads to a decrease of the electron dens...In collisionless reconnection,the magnetic field near the separatrix is stronger than that around the X-line,so an electron-beam can be formed and flows toward the X-line,which leads to a decrease of the electron density near the separatrix.Having been accelerated around the X-line,the electrons flow out along the magnetic field lines in the inner side of the separatrix.A quadruple structure of the Hall magnetic field By is formed by such a current system.A 2D particle-in-cell (PIC) simulation code is used in this paper to study the collisionless magnetic reconnection without an initial guide field.The current system described above is proved by the simulations.Furthermore,the position of the peak of the Hall magnetic field By is found to be between the separatrix and the center of the current sheet,which is verified by Cluster observations.展开更多
Two-dimensional particle-in-cell (PIC) simulation is used to investigate electron dynamics in colli- sionless magnetic reconnection, and the proton/electron mass ratio is taken to be mi /me = 256. The results show tha...Two-dimensional particle-in-cell (PIC) simulation is used to investigate electron dynamics in colli- sionless magnetic reconnection, and the proton/electron mass ratio is taken to be mi /me = 256. The results show that the presence of a strong initial guide field will change the direction of the electron flow. The electron density cavities and the parallel electric field can be found in the electron inflow re- gion along the separatrix, and the electron inflow and density cavities only appear in the second and fourth quadrants. What is different from the results with a smaller mass ratio is that new structures appear in the diffusion region near the X line: (1) Narrow regions of density enhancement and density cavities can be found synchronously in this region; and (2) corresponding to the electron density changes near the X line, the strong parallel electric fields are found to occur in the first and third quadrants. These electric fields perhaps play a more important role in acceleration and heating electrons than those fields located in the density cavities.展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Eart...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Earth's magnetosphere to the solar wind(SW)impact via simultaneous in situ magnetosheath plasma and magnetic field measurements,X-Ray images of the magnetosheath and magnetic cusps,and UV images of global auroral distributions.Magnetopause deformations associated with magnetosheath high speed jets(HSJs)under a quasi-parallel interplanetary magnetic field condition are studied using a threedimensional(3-D)global hybrid simulation.Soft X-ray intensity calculated based on both physical quantities of solar wind proton and oxygen ions is compared.We obtain key findings concerning deformations at the magnetopause:(1)Magnetopause deformations are highly coherent with the magnetosheath HSJs generated at the quasi-parallel region of the bow shock,(2)X-ray intensities estimated using solar wind h+and self-consistentO7+ions are consistent with each other,(3)Visual spacecraft are employed to check the discrimination ability for capturing magnetopause deformations on Lunar and polar orbits,respectively.The SMILE spacecraft on the polar orbit could be expected to provide opportunities for capturing the global geometry of the magnetopause in the equatorial plane.A striking point is that SMILE has the potential to capture small-scale magnetopause deformations and magnetosheath transients,such as HSJs,at medium altitudes on its orbit.Simulation results also demonstrate that a lunar based imager(e.g.,Lunar Environment heliospheric X-ray Imager,LEXI)is expected to observe a localized brightening of the magnetosheath during HSJ events in the meridian plane.These preliminary results might contribute to the pre-studies for the SMILE and LEXI missions by providing qualitative and quantitative soft X-ray estimates of dayside kinetic processes.展开更多
We analyse the WIND data of an interplanetary magnetic cloud (MC) on 2 November 2001, and find new evidences for magnetic reconnection in the tail of this MC. In the MC tail, the largely dip and the large change of ...We analyse the WIND data of an interplanetary magnetic cloud (MC) on 2 November 2001, and find new evidences for magnetic reconnection in the tail of this MC. In the MC tail, the largely dip and the large change of the orientation of the magnetic field occurred simultaneously, △θ≈45° and △φ changed from 90° to 320°. Correspondingly, the number density of ions increased, and the superthermal electrons were heated and accelerated, however its number density decreased. Meanwhile, inverse jets and Hall term were observed. The pitch-angle distributions of the electrons with lower energy and higher energy showed strong turbulence and bi-direction flow, respectively. The plasma wave activity enhanced near the electron plasma frequency, fpe and 2fpe. These important physical characteristics are new evidences for magnetic reconnection existing in interplanetary space.展开更多
基金the National Key Research and Development Program of China(Grant No.2022YFA1604600)the National Natural Science Foundation of China(NSFC,Grant No.42174181)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000).
文摘Two-dimensional particle-in-cell simulations are performed to study the coupling between ion and electron motions in collisionless magnetic reconnection.The electron diffusion region(EDR),where the electron motions are demagnetized,is found to have a two-layer structure:an inner EDR near the reconnection site and an outer EDR that is elongated to nearly 10 ion inertial lengths in the outflow direction.In the inner EDR,the speed of the electron outflow increases when the electrons move away from the X line.In the outer EDR,the speed of the electron outflow first increases and then decreases until the electrons reach the boundary of the outer EDR.In the boundary of the outer EDR,the magnetic field piles up and forms a depolarization front.From the perspective of the fluid,a force analysis on the formation of electron and ion outflows has also been investigated.Around the X line,the electrons are accelerated by the reconnection electric field in the out-of-plane direction.When the electrons move away from the X line,we find that the Lorentz force converts the direction of the accelerated electrons to the x direction,forming an electron outflow.Both electric field forces and electron gradient forces tend to drag the electron outflow.Ion acceleration along the x direction is caused by the Lorentz force,whereas the pressure gradient force tends to decelerate the ion outflow.Although these two terms are important,their effects on ions are almost offset.The Hall electric field force does positive work on ions and is not negligible.The ions are continuously accelerated,and the ion and electron outflow velocities are almost the same near the depolarization front.
基金Project supported by the National Natural Science Foundation of China(Grant No.42174181)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJ-SSW-DQC010)。
文摘Magnetic reconnection underlies the physical mechanism of explosive phenomena in the solar atmosphere and planetary magnetospheres, where plasma is usually collisionless. In the standard model of collisionless magnetic reconnection,the diffusion region consists of two substructures: an electron diffusion region is embedded in an ion diffusion region,in which their scales are based on the electron and ion inertial lengths. In the ion diffusion region, ions are unfrozen in the magnetic fields while electrons are magnetized. The resulted Hall effect from the different motions between ions and electrons leads to the production of the in-plane currents, and then generates the quadrupolar structure of out-of-plane magnetic field. In the electron diffusion region, even electrons become unfrozen in the magnetic fields, and the reconnection electric field is contributed by the off-diagonal electron pressure terms in the generalized Ohm’s law. The reconnection rate is insensitive to the specific mechanism to break the frozen-in condition, and is on the order of 0.1. In recent years, the launching of Cluster, THEMIS, MMS, and other spacecraft has provided us opportunities to study collisionless magnetic reconnection in the Earth’s magnetosphere, and to verify and extend more insights on the standard model of collisionless magnetic reconnection. In this paper, we will review what we have learned beyond the standard model with the help of observations from these spacecraft as well as kinetic simulations.
基金Project supported by the National Basic Research Program of China(Grant No.2013CBA01501)the National Natural Science Foundation of China(Grant No.11135012)
文摘The remarkable experimental progress in the studies of collisionless shockwave(CS) in laboratories employing highpower lasers is briefly reviewed. The results show that CS can be generated in laser-produced plasmas due to the microturbulence associated with instabilities. CS is one of the most important astronomical phenomena. It has been found in supernova remnants(SNRs), Sun–Earth space, etc. This paper focuses on CS in ways relevant to SNRs. Laboratory astrophysics(LA), a new interdisciplinary frontier of astrophysics, plasma and laser physics, has developed rapidly in recent years. As an accessory to the astronomical observation, LA experimenters can closely study some astronomical events scaled-down to controllable phenomena.
文摘A triple frequency capacitively coupled plasma (TF-CCP) has been considered to investigate the behavior of the sheath parameters. A self-consistent time-independent collisionless model has been developed. The sheath width and potential are calculated using the present model and compared with those calculated using a single-frequency (SF), a dual-frequency (DF) and a triple-frequency (TF) model for time independent collisionless cases. The sheath motion and sheath potential are found to be larger compared with those of SF and DF CCPs for an inhomogeneous sheath, and that of TF CCP for a homogeneous sheath. The effects of the source parameters, i.e., current magnitudes, frequencies and phase difference, on the sheath parameters are investigated. The sheath parameters show higher values at higher source currents whereas they decrease with the increase of excitation frequencies. It has also been found that, by the proper choice of source frequencies and phase differences, it is possible to adjust the energy of ions when they hit the electrode.
文摘The equation of electromagnetic wave propagation through cold collisionless plasma can be reduced to the modified Kortweg-de Vries (mKdV) equation. Using a new technique, whose keys are the trial solution in terms of the exponential function and the ideas of the like-terms' balance, some groups of accurate analytical solutions for this mKdV equation, such as solitary wave solutions, can be obtained. It is successfully shown that this method may be still valid for solving other nonlinear plasma equations.
基金funded by the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB41000000)National Natural Science Foundation of China(NSFC)(Nos. 42174181 ,12205298)the Key Research Program of Frontier Sciences CAS (No. QYZDJ-SSWDQC010)。
文摘Recently, perpendicular shocks have been generated in laboratory experiments by the interaction between a laser-produced supersonic plasma flow and a magnetized ambient plasma. Here, we explore the ion dynamics and the formation of such kinds of shock with a one-dimensional(1D)particle-in-cell simulation model using achievable parameters for laser experiments. A small part of the ambient ions is first reflected by the laser-driven piston. These piston-reflected ions interact with the upstream plasma and form a shock then. By analyzing the contribution of the electric force and the Lorentz force during the reflection, shock-reflected ions are found to be accelerated by two different mechanisms: shock drift acceleration and shock surfing acceleration,where shock drift acceleration is the dominant one. Very few ions are reflected twice by the shock and accelerated to a large velocity, implying that a more energetic population of ions can be observed in future experiments.
基金supported by the National Natural Science Foundation of China (NSFC) under Grants 42074197, 42130211, 42104156, and 41774154the China Postdoctoral Science Foundation under Grant 2021M691395
文摘Magnetic reconnection is well known as an efficient mechanism for transferring magnetic energy into plasma energy.However,how the energy conversion and partition between different species is influenced by the shear angle of the reconnecting magnetic component(i.e.,the guide field strength)is not well understood.Using 2.5-dimensional particle-in-cell simulations,we investigated the energy conversion in reconnection with different guide fields.We found that the overall energy conversion first decreases steeply and then increases slowly when the guide field increases fromB_(g)=0 toB_(g)=4.The increase in energy conversion in the large guide field regime is due to the electron energy gain through the perpendicular channelJ_(⊥)·E_(⊥).The overall energy conversion is predominantly contributed byJ_(⊥)·E_(⊥) rather thanJ||E||.We further find that energy conversion mainly occurs within the reconnection front and the flux pileup region.However,the contribution from the fore reconnection front becomes important in large guide field regimes(3<B_(g)≤4)because of the enhanced electron energy gain.
基金supported by the Science Challenge Project (No. TZ2016005)the National Basic Program of China (No. 2013CBA01501/03)+2 种基金the National Natural Science Foundation of China (Nos. 11503041, 11522326, 11622323, and 11573040)the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDB16010200 and XDB07030300)the Project Funded by China Postdoctoral Science Foundation (No. 2015M571124)
文摘Astrophysical collisionless shocks are amazing phenomena in space and astrophysical plasmas, where supersonic flows generate electromagnetic fields through instabilities and particles can be accelerated to high energy cosmic rays. Until now, understanding these micro-processes is still a challenge despite rich astrophysical observation data have been obtained. Laboratory astrophysics, a new route to study the astrophysics, allows us to investigate them at similar extreme physical conditions in laboratory. Here we will review the recent progress of the collisionless shock experiments performed at SG-II laser facility in China. The evolution of the electrostatic shocks and Weibel-type/filamentation instabilities are observed. Inspired by the configurations of the counter-streaming plasma flows, we also carry out a novel plasma collider to generate energetic neutrons relevant to the astrophysical nuclear reactions.
基金Project supported by the National Natural Science Foundation of China.
文摘The problem of dark matter in present astrophysics has been disputed for a long time and has not been solved yet. More and more evidence shoves that mostly the dark matter is probably not baryonic, but the collisionless particles which only participate in the gravitational interaction. These collisionless particles can condense in any potential well and provide the 'missing mass'.
文摘This work reveals an exploration of self-focusing of Hermite-cosine-Gaussian laser beam in a collisionless plasma under relativistic nonlinearity. Self-focusing along with self-trapping of Hermite-cosine-Gaussian laser beam are analyzed for different values of laser intensity, plasma density, and decentered parameters. Mathematical analysis displays that these parameters play a major role in achieving the stronger and earlier self-focusing. Further, a comparative study between self-focusing of Hermite-cosine-Gaussian laser beam with and without exponential density ramp profile is introduced. Plasma density transition with exponential profile is found to be more effective in order to have stronger self-focusing. The present analysis may lead to very useful applications in the field of efficient harmonic generation, laser driven fusion etc.
文摘OBSERVATIONS and theoretical calculations show that a part of protons are reflected by theshock after the interaction between the solar wind and the quasi-perpendicular collisionlessshock with high Much number.These protons have large velocities in the direction per-pendicular to the magnetic field and move again towards the downstream of shock due to theeffect of gyration.Upon their second encounter with the shock,most of them are
文摘The purpose of this study is to explore the second harmonic generation(SHG)of a high power Cosh-Gaussian beam in cold collisionless plasma.The ponderomotive force causes carrier redistribution from high field to low field region in presence of a Cosh-Gaussian beam thereby producing density gradients in the transverse direction.The density gradients so produced the results in electron plasma wave(EPW)generation at the frequency of the input beam.The EPW interacts with the input beam resulting in the production of 2nd harmonics.WKB and paraxial approximations are employed for obtaining the 2nd order differential equation describing the behavior of the beam’s spot size against normalized distance.The impact of well-established laser-plasma parameters on the behavior of the beam’s spot size and SHG yield are also analyzed.The focusing behavior of the beam and SHG yield is enhanced with an increase in the density of plasma,the radius of the beam and the decentred parameter,and with a decrease in the intensity of the beam.The results of the current problem are really helpful for complete information of laser-plasma interaction physics.
基金This work was partially supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science(No.18340188)the Research Cooperation Program on Hierarchy and Holism in Natural Sciences 2 at National Institutes of Natu-ral Sciences,and General Coordinated Research at National Institute for Fusion Science(NIFS06KTAT037).
文摘The dynamical evolution of collisionless driven reconnection is investigated by using an electromagnetic particle simulation code in a microscopic open system.Strong in-plane electrostatic field is excited in the central region of current sheet under the influence of an external driving field.As a result of the amplification of unmagnetized meandering motion by the electrostatic field particle distribution function is modified from the shifted Maxwellian to an anisotropic one in the current sheet.An ion hole appears at the center of current sheet in the phase space,where distribution becomes two-peaked and no ions exist in low velocity region between two peaks.The strongmodification of distribution function leads to the generation of off-diagonal components of pressure tensor term,which is one of major causes to violate frozen-in constraint and trigger collisionless reconnection.
基金supported by the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No.KJCX2-YW-N28)National Natural Science Foundation of China (Grant Nos.40674093,40725013 and 40874075)Specialized Research Fund for State Key Laboratories
文摘In collisionless reconnection,the magnetic field near the separatrix is stronger than that around the X-line,so an electron-beam can be formed and flows toward the X-line,which leads to a decrease of the electron density near the separatrix.Having been accelerated around the X-line,the electrons flow out along the magnetic field lines in the inner side of the separatrix.A quadruple structure of the Hall magnetic field By is formed by such a current system.A 2D particle-in-cell (PIC) simulation code is used in this paper to study the collisionless magnetic reconnection without an initial guide field.The current system described above is proved by the simulations.Furthermore,the position of the peak of the Hall magnetic field By is found to be between the separatrix and the center of the current sheet,which is verified by Cluster observations.
基金Supported by National Natural Science Foundation of China (Grant No. 40725013)Open Research Program Foundation of State Key Laboratory for Space Weather, Chinese Academy Sciences
文摘Two-dimensional particle-in-cell (PIC) simulation is used to investigate electron dynamics in colli- sionless magnetic reconnection, and the proton/electron mass ratio is taken to be mi /me = 256. The results show that the presence of a strong initial guide field will change the direction of the electron flow. The electron density cavities and the parallel electric field can be found in the electron inflow re- gion along the separatrix, and the electron inflow and density cavities only appear in the second and fourth quadrants. What is different from the results with a smaller mass ratio is that new structures appear in the diffusion region near the X line: (1) Narrow regions of density enhancement and density cavities can be found synchronously in this region; and (2) corresponding to the electron density changes near the X line, the strong parallel electric fields are found to occur in the first and third quadrants. These electric fields perhaps play a more important role in acceleration and heating electrons than those fields located in the density cavities.
基金supported by the National Key R&D program of China No.2021YFA0718600NNFSC grants 42150105,42188101,and 42274210the Specialized Research Fund for State Key Laboratories of China。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)is a joint mission of the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS).Primary goals are investigating the dynamic response of the Earth's magnetosphere to the solar wind(SW)impact via simultaneous in situ magnetosheath plasma and magnetic field measurements,X-Ray images of the magnetosheath and magnetic cusps,and UV images of global auroral distributions.Magnetopause deformations associated with magnetosheath high speed jets(HSJs)under a quasi-parallel interplanetary magnetic field condition are studied using a threedimensional(3-D)global hybrid simulation.Soft X-ray intensity calculated based on both physical quantities of solar wind proton and oxygen ions is compared.We obtain key findings concerning deformations at the magnetopause:(1)Magnetopause deformations are highly coherent with the magnetosheath HSJs generated at the quasi-parallel region of the bow shock,(2)X-ray intensities estimated using solar wind h+and self-consistentO7+ions are consistent with each other,(3)Visual spacecraft are employed to check the discrimination ability for capturing magnetopause deformations on Lunar and polar orbits,respectively.The SMILE spacecraft on the polar orbit could be expected to provide opportunities for capturing the global geometry of the magnetopause in the equatorial plane.A striking point is that SMILE has the potential to capture small-scale magnetopause deformations and magnetosheath transients,such as HSJs,at medium altitudes on its orbit.Simulation results also demonstrate that a lunar based imager(e.g.,Lunar Environment heliospheric X-ray Imager,LEXI)is expected to observe a localized brightening of the magnetosheath during HSJ events in the meridian plane.These preliminary results might contribute to the pre-studies for the SMILE and LEXI missions by providing qualitative and quantitative soft X-ray estimates of dayside kinetic processes.
基金Supported by the National Natural Science Foundation of China under Grant Nos G200078405, 40336053 and 40274052, and the International Collaboration Research Team Program of the Chinese Academy of Sciences.
文摘We analyse the WIND data of an interplanetary magnetic cloud (MC) on 2 November 2001, and find new evidences for magnetic reconnection in the tail of this MC. In the MC tail, the largely dip and the large change of the orientation of the magnetic field occurred simultaneously, △θ≈45° and △φ changed from 90° to 320°. Correspondingly, the number density of ions increased, and the superthermal electrons were heated and accelerated, however its number density decreased. Meanwhile, inverse jets and Hall term were observed. The pitch-angle distributions of the electrons with lower energy and higher energy showed strong turbulence and bi-direction flow, respectively. The plasma wave activity enhanced near the electron plasma frequency, fpe and 2fpe. These important physical characteristics are new evidences for magnetic reconnection existing in interplanetary space.