The high electrical conductivity and high specific surface area of graphene are traditionally regarded as the most intriguing features for its promise as the electrode material for supercapacitors. In this perspective...The high electrical conductivity and high specific surface area of graphene are traditionally regarded as the most intriguing features for its promise as the electrode material for supercapacitors. In this perspective, we highlight that from the engineering point of view, the unique colloidal chemistry of chemically functionalized graphene is the key property that has made graphene stand out as a promising nanoscale building block for constructing unique nanoporous electrodes for capacitive energy storage, We present several examples to demonstrate bow the non-covalent colloidal forces between graphene sheets can be harnessed to engineer the nanostructure of graphene-based bulk electrodes for supercapacitors based on both the electrical double layer storage and the redox reaction or pseudo-capacitance mechanisms. The colloidal engineering strategy can be extended to enable other nanomaterials to achieve high energy storage performance.展开更多
Applying statistics and the orthogonal experiment design method, this paper studies the colloid materials for stope stability simulation and gets some material blending ratios to meet demands of original models to obt...Applying statistics and the orthogonal experiment design method, this paper studies the colloid materials for stope stability simulation and gets some material blending ratios to meet demands of original models to obtain satisfactory reliability.展开更多
基金the financial support for the Australian Research Council(FT110100341 and DP140102624)
文摘The high electrical conductivity and high specific surface area of graphene are traditionally regarded as the most intriguing features for its promise as the electrode material for supercapacitors. In this perspective, we highlight that from the engineering point of view, the unique colloidal chemistry of chemically functionalized graphene is the key property that has made graphene stand out as a promising nanoscale building block for constructing unique nanoporous electrodes for capacitive energy storage, We present several examples to demonstrate bow the non-covalent colloidal forces between graphene sheets can be harnessed to engineer the nanostructure of graphene-based bulk electrodes for supercapacitors based on both the electrical double layer storage and the redox reaction or pseudo-capacitance mechanisms. The colloidal engineering strategy can be extended to enable other nanomaterials to achieve high energy storage performance.
文摘Applying statistics and the orthogonal experiment design method, this paper studies the colloid materials for stope stability simulation and gets some material blending ratios to meet demands of original models to obtain satisfactory reliability.