A series of cross-linked hydrogels for colon-specific drug delivery were synthesized by graft copolymerization of Chitosan and acrylic acid using N, N'-methylene-bis-(acrylamide) as a cross-linker. Their swelling b...A series of cross-linked hydrogels for colon-specific drug delivery were synthesized by graft copolymerization of Chitosan and acrylic acid using N, N'-methylene-bis-(acrylamide) as a cross-linker. Their swelling behavior in different pH buffer solutions and colonic enzymatic degradability were studied. The obtained results show that these hydrogels have good pH sensitivity which can avoid drug release in stomach, and their swelling kinetics in stimulant intestinal environment follow second-order swelling kinetics equation. The factors influencing the swelling kinetics include the degree of cross-linking and the composition, which may control no release or a little amount release of drug inside the hydrogels in the small intestine by tailoring these factors. The gels are degradable by colonic enzymes and there is a correlativity between the degradation of networks and the swelling degree of the gels, which may trigger the release of drug in the colon. The hydrogels show a great potential for their application in oral colon-specific drug delivery system.展开更多
The use of stem cells as carriers for therapeutic agents is an appealing modality for targeting tissues or organs of interest. Combined delivery of cells together with various information molecules as therapeutic agen...The use of stem cells as carriers for therapeutic agents is an appealing modality for targeting tissues or organs of interest. Combined delivery of cells together with various information molecules as therapeutic agents has the potential to enhance, modulate or even initiate local or systemic repair processes, increasing stem cell efficiency for regenerative medicine applications. Stem-cell-mediated delivery of genes, proteins or small molecules takes advantage of the innate capability of stem cells to migrate and home to injury sites. As the native migratory properties are affected by in vitro expansion, the existent methods for enhancing stem cell targeting capabilities(modified culture methods, genetic modification, cell surface engineering) are described. The role of various nanoparticles in eq-uipping stem cells with therapeutic small molecules is revised together with their class-specific advantages and shortcomings. Modalities to circumvent common challenges when designing a stem-cell-mediated targeted delivery system are described as well as future prospects in using this approach for regenerative medicine applications.展开更多
Of late, the relevance of silk in a myriad of material science and biotechnological realms has been realized, as attested by the incessantly clambering number of reports and patents in the scienti fic repositories. Th...Of late, the relevance of silk in a myriad of material science and biotechnological realms has been realized, as attested by the incessantly clambering number of reports and patents in the scienti fic repositories. The write-up is geared off with a scrutiny into the pertinence of the basic nano-structural features of silk, christened as the ‘queen of textile’ for exemplary bioengi- neering applications including designing and fabrication of devices for micro fluidics, opto fluidics, chemo/bio sensing, etc. Then, the major thrust of this short review is directed towards comprehending the prospects of using silk-based biomaterials (e.g. sca ffolds, electrospun membranes, films, hydrogels, bioinks) for tissue engineering and regenerative medicine as well as targeted delivery of various biomolecular cargoes/therapeutic agents, etc., as vouched by few avant-garde endeavours of the recent years. The write-up is entwined with a discussion on the various factors that could plausibly hinder the realization of silk as the next-generation nanobiomaterial, suggestions for some approaches to dodge and deal with the practical snags and what lies ahead!展开更多
<div style="text-align:justify;"> <span style="font-family:Verdana;">Average Bangladeshis spend a significant amount of income on medicine. A reliable and fast online medicine delivery ...<div style="text-align:justify;"> <span style="font-family:Verdana;">Average Bangladeshis spend a significant amount of income on medicine. A reliable and fast online medicine delivery system is not ubiquitous. Most people buy medicine from the local Pharmacies. They need to go to medicine stores to buy the specific medicine prescribed by the specialized doctors. Sometimes all prescribed medicines are not available in local Pharmacies therefore people need to go to other areas to buy the medicines. It is very time consuming and people need to spend money as well for this. In our country, traffic jams are a very big problem. People waste longer time on the road due to traffic jams. Here most of the pharmacies are closed at night time but sometimes in an emergency situation medicine is very essential. In this case an online web based e-commerce medicine delivery system is needed very much. In addition, currently the whole world is suffering due to COVID-19 pandemic. Coronavirus is very contagious which we all know. In this pandemic time it is not risk free to go out to buy medicine from the pharmacies. Due to COVID-19, medicine scarcity is also an important issue. In this situation, an online medicine delivery system can play an important role. By considering the above mentioned facts, a reliable and fast online solution is proposed. This paper presents the development of a web based online medicine delivery system. A reliable, fast, safe and user-friendly online based e-commerce web application has been developed in this paper. Medicine delivery system has also been included with this proposed system. This platform is a dynamic web application built in Hypertext Preprocessor (PHP) based Laravel framework with a powerful back end. It is hosted on a dedicated Virtual Private Server (VPS). This system is lightning fast and optimized very well for searching engines. With the help of the developed platform, drugs will be available at one’s doorstep very fast, safely and reliably. In this system, users can choose a medicine section of their choices and go through all the items that the system provides. Users can then select the desired drug items, add them to cart and then proceed to payment. It has payment integration of Cash on Delivery (COD) systems. After developing the system it has been tested and it works fine. It is a one-stop solution where people can find various medicines including COVID-19 related medicines and other items in this online platform. Besides medicine, here you can also find other health care products like food supplements, birth control products, hair care products, skincare products, beauty products, etc. People can order their required medicines or other medical related available items from online and the delivery support will provide the products door to door for the users. Using this system now users can get their needed medicine without leaving home. They can save money and they do not need to go out in this pandemic situation to buy medicine. In this crucial situation, the online medicine delivery system is very helpful and it will act as a blessing for the people.</span> </div>展开更多
With the continuous advancement of technology,the application of 3D printing technology in the field of dental medicine is becoming increasingly widespread.This article aims to explore the current applications and fut...With the continuous advancement of technology,the application of 3D printing technology in the field of dental medicine is becoming increasingly widespread.This article aims to explore the current applications and future potential of 3D printing technology in dental medicine and to analyze its benefits and challenges.It first introduces the current state of 3D printing technology in dental implants,crowns,bridges,orthodontics,and maxillofacial surgery.It then discusses the potential applications of 3D printing technology in oral tissue engineering,drug delivery systems,personalized dental prosthetics,and surgical planning.Finally,it analyzes the benefits of 3D printing technology in dental medicine,such as improving treatment accuracy and patient comfort,and shortening treatment times,while also highlighting the challenges faced,such as costs,material choices,and technical limitations.This article aims to provide a reference for professionals in the field of dental medicine and to promote the further application and development of 3D printing technology in this area.展开更多
AIM: To investigate the permeability characteristics of rebamipide across intestinal mucosa, and examine the effects of some absorption enhancers on the permeability across the colonic tissue. Another purpose is to de...AIM: To investigate the permeability characteristics of rebamipide across intestinal mucosa, and examine the effects of some absorption enhancers on the permeability across the colonic tissue. Another purpose is to demonstrate the colon-specific delivery of rebamipide with or without absorption enhancers using chitosan capsule as a carrier. METHODS: The permeability of rebamipide was evaluated using an in vitro diffusion chamber system, and the effects of some absorption enhancers on the permeability via colon were further investigated. The release of rebamipide from chitosan or gelatin capsule was studied by Japan Pharmacopoeia rotating basket method. The colonic and plasma concentrations were analyzed by high performance liquid chromatography (HPLC) to evaluate colon-targeting action after oral administration of various dosage forms, and rebamipide with absorption enhancers in chitosan dosage forms. RESULTS: The permeability of rebamipide across the jejunal or ileal membranes was higher than the colonic membranes. Both sodium laurate (C12) and labrasol signifi cantly increased permeability across the colon membranes. On the other hand, the release of rebamipide from chitosan capsule was less than 10%totally within 6 h. The area under concentration-time profile of drug in the colon mucosa using chitosan capsules (AUCLI, 1 6011.2 ng·h/g) was 2.5 times and 4.4 times greater than using gelatin capsules and CMC suspension, respectively. Meanwhile, the area under concentration-time profile of drug in the plasma (AUCPL) was 1016.0 ng·h/mL for chitosan capsule, 1887.9 ng·h/mL for CMC suspension p and 2163.5 ng·h/mL for gelatin capsule. Overall, both AUCLI and AUCPL were increased when C12 was co-administrated, but the increase of AUCLI was much greater; the drug delivery index (DDI) was more than 1 compared with simple chitosan capsule group. CONCLUSION: There was a regional difference in the permeability of Rabamipide across the jejunum, ileum and the colon, and passive diffusion seems to be one of the major transport mechanisms of rebamipide. Absorption enhancers can increase the permeability of rebamipide across the colon tissue signifi cantly. In addition, chitosan capsule may be a useful carrier to deliver rebamipide to the colon specifi cally and the co-administration of C12 with rebamipide may also be very useful in local treatment.展开更多
Alcohol-associated liver disease(ALD)is a common chronic liver disease and major contributor to liver disease-related deaths worldwide.Despite its prevalence,there are few effective pharmacological options for the sev...Alcohol-associated liver disease(ALD)is a common chronic liver disease and major contributor to liver disease-related deaths worldwide.Despite its prevalence,there are few effective pharmacological options for the severe stages of this disease.While much pre-clinical research attention is paid to drug development in ALD,many of these experimental therapeutics have limitations such as poor pharmacokinetics,poor efficacy,or off-target side effects due to systemic administration.One means of addressing these limitations is through liver-targeted drug delivery,which can be accomplished with different platforms including liposomes,polymeric nanoparticles,exosomes,bacteria,and adenoassociated viruses,among others.These platforms allow drugs to target the liver passively or actively,thereby reducing systemic circulation and increasing the‘effective dose’in the liver.While many studies,some clinical,have applied targeted delivery systems to other liver diseases such as viral hepatitis or hepatocellular carcinoma,only few have investigated their efficacy in ALD.This review provides basic information on these liver-targeting drug delivery platforms,including their benefits and limitations,and summarizes the current research efforts to apply them to the treatment of ALD in rodent models.We also discuss gaps in knowledge in the field,which when addressed,may help to increase the efficacy of novel therapies and better translate them to humans.展开更多
The aim of this study was to evaluate the effect of coating of alginate-chitosan (AL:CS) beads on the colonic drug delivery. The AL:CS systems containing triamcinolone (TC) were coated with the HPMCP and Eudragit? L10...The aim of this study was to evaluate the effect of coating of alginate-chitosan (AL:CS) beads on the colonic drug delivery. The AL:CS systems containing triamcinolone (TC) were coated with the HPMCP and Eudragit? L100 by immersion and by spraying methods. The drug release profile in simulated colonic medium was determined using 5% human fecal content suspension in 0.01 N buffer solution, pH 6.8. The systems coated with HPMCP showed a lower rate of drug delivery in simulated enteric medium. The delivery profile in simulated colonic medium followed zero-order kinetic. The coated systems provided a promising drug-delivery profile for application in colonic drug delivery.展开更多
The contribution of the genetic make-up to an individual’s capacity has long been recognized in modern pharmacology as a crucial factor leading to therapy ineffciency and toxicity, negatively impacting the economic b...The contribution of the genetic make-up to an individual’s capacity has long been recognized in modern pharmacology as a crucial factor leading to therapy ineffciency and toxicity, negatively impacting the economic burden of healthcare and restricting the monitoring of diseases. In practical terms, and in order for drug prescription to be improved toward meeting the personalized medicine concept in drug delivery, the maximum clinical outcome for most, if not all, patients must be achieved, i.e. , pharmacotyping. Such a direction although promising and of high expectation from the society, it is however hardly to be afforded for healthcare worldwide. To overcome any existed hurdles, this means that practical clinical utility of personalized medicine decisions have to be documented and validated in the clinical setting. The latter implies for drug delivery the effcient implementation of previously gained in vivo pharmacology experience with pharmacogenomics knowledge. As an approach to work faster and in a more productive way, the elaboration of advanced physiologically based phar-macokinetics models is discussed. And in better clarifying this topic, the example of tamoxifen is thoroughly presented. Overall, pharmacotyping represents a major challenge in modern therapeutics for which pharmacologists need to work in successfully fulflling this task.展开更多
背景:静电纺丝多孔纳米纤维是一种具有优良性能和可设计性的材料,将传统中药与其联合构建新型中药控释系统是实现中药的控制释放和提高生物利用度的有效途径,具有广阔应用前景。目的:综述静电纺丝中药控释系统的构建方法及其在医学领域...背景:静电纺丝多孔纳米纤维是一种具有优良性能和可设计性的材料,将传统中药与其联合构建新型中药控释系统是实现中药的控制释放和提高生物利用度的有效途径,具有广阔应用前景。目的:综述静电纺丝中药控释系统的构建方法及其在医学领域相关研究进展。方法:以“静电纺丝,中药,药物载体,释药系统,组织工程,敷料”为中文检索词,以“electrospinning,traditional Chinese medicine,drug carrier,drug delivery system,tissue engineering,dressing”为英文检索词,检索中国知网、PubMed和Web of Science数据库的关于静电纺丝中药控释系统的研究应用文献,检索时间范围为2013-2023年,最终纳入62篇文献进行综述分析。结果与结论:①构建电纺多孔纤维中药控释系统的关键要素为基质材料、中药成分和载药方式。②电纺多孔纤维中药控释系统的构建可依据应用场景和治疗目的进行,首先选定中药成分种类,然后依据药物特性选择与其适配的聚合物基体及溶液,最后依据释药需求设计纤维结构并采用适宜的载药方式。③目前在电纺纤维中药控释系统中所应用的药剂以易制备纺丝溶液的植物中药提取物为主,缺少动物中药和矿物中药的系统研究。④共混载药是研究应用最多的载药方式,且通过对溶液理化性质的优化和负载物质多样性的选择不断扩展其释药特性和适应场景;同轴、多轴及顺序纺丝等载药方式可以制备具有多层成分性质不同的复合纤维,具有广阔发展前景。⑤电纺纤维中药控释系统早期应用集中于医用敷料方面,利用中药活性成分的抗菌止血功能,近年来发现中药某些成分能促进细胞黏附增殖分化,开启了组织工程领域的探索研究。⑥目前对电纺多孔纤维中药控释系统的研究主要集中在对负载材料、工艺、理化性能、生物性能的表征和优化上,而对机制的研究较少,其在临床中的应用尚未普及,在体内的不良反应尚不明了,对其降解行为与释药行为的相互影响也缺乏研究。⑦未来研究中需要考虑:通过改善中药与纺丝溶剂的理化性能和加大中药活性成分的提纯以扩大非植物中药的应用范围,对中药成分的治疗效果和作用机制进行全面研究,并阐明控释系统的降解行为与释药行为的相互影响规律,在更准确的机制下实现中药与电纺纳米纤维更完美的联合和应用。展开更多
Cancer immunotherapy has garnered promise in tumor progression, invasion, and metastasis through establishing durable and memorable immunological activity. However, low response rates, adverse side effects, and high c...Cancer immunotherapy has garnered promise in tumor progression, invasion, and metastasis through establishing durable and memorable immunological activity. However, low response rates, adverse side effects, and high costs compromise the additional benefits for patients treated with current chemical and biological agents. Chinese herbal medicines (CHMs) are a potential treasure trove of natural medicines and are gaining momentum in cancer immunomodulation with multi-component, multi-target, and multi-pathway characteristics. The active ingredient extracted from CHMs benefit generalized patients through modulating immune response mechanisms. Additionally, the introduction of nanotechnology has greatly improved the pharmacological qualities of active ingredients through increasing the hydrophilicity, stability, permeability, and targeting characteristics, further enhancing anti-cancer immunity. In this review, we summarize the mechanism of active ingredients for cancer immunomodulation, highlight nano-formulated deliveries of active ingredients for cancer immunotherapy, and provide insights into the future applications in the emerging field of nano-formulated active ingredients of CHMs.展开更多
基金Funded by the National Natural Science Foundation of China (No.50503019)
文摘A series of cross-linked hydrogels for colon-specific drug delivery were synthesized by graft copolymerization of Chitosan and acrylic acid using N, N'-methylene-bis-(acrylamide) as a cross-linker. Their swelling behavior in different pH buffer solutions and colonic enzymatic degradability were studied. The obtained results show that these hydrogels have good pH sensitivity which can avoid drug release in stomach, and their swelling kinetics in stimulant intestinal environment follow second-order swelling kinetics equation. The factors influencing the swelling kinetics include the degree of cross-linking and the composition, which may control no release or a little amount release of drug inside the hydrogels in the small intestine by tailoring these factors. The gels are degradable by colonic enzymes and there is a correlativity between the degradation of networks and the swelling degree of the gels, which may trigger the release of drug in the colon. The hydrogels show a great potential for their application in oral colon-specific drug delivery system.
文摘The use of stem cells as carriers for therapeutic agents is an appealing modality for targeting tissues or organs of interest. Combined delivery of cells together with various information molecules as therapeutic agents has the potential to enhance, modulate or even initiate local or systemic repair processes, increasing stem cell efficiency for regenerative medicine applications. Stem-cell-mediated delivery of genes, proteins or small molecules takes advantage of the innate capability of stem cells to migrate and home to injury sites. As the native migratory properties are affected by in vitro expansion, the existent methods for enhancing stem cell targeting capabilities(modified culture methods, genetic modification, cell surface engineering) are described. The role of various nanoparticles in eq-uipping stem cells with therapeutic small molecules is revised together with their class-specific advantages and shortcomings. Modalities to circumvent common challenges when designing a stem-cell-mediated targeted delivery system are described as well as future prospects in using this approach for regenerative medicine applications.
文摘Of late, the relevance of silk in a myriad of material science and biotechnological realms has been realized, as attested by the incessantly clambering number of reports and patents in the scienti fic repositories. The write-up is geared off with a scrutiny into the pertinence of the basic nano-structural features of silk, christened as the ‘queen of textile’ for exemplary bioengi- neering applications including designing and fabrication of devices for micro fluidics, opto fluidics, chemo/bio sensing, etc. Then, the major thrust of this short review is directed towards comprehending the prospects of using silk-based biomaterials (e.g. sca ffolds, electrospun membranes, films, hydrogels, bioinks) for tissue engineering and regenerative medicine as well as targeted delivery of various biomolecular cargoes/therapeutic agents, etc., as vouched by few avant-garde endeavours of the recent years. The write-up is entwined with a discussion on the various factors that could plausibly hinder the realization of silk as the next-generation nanobiomaterial, suggestions for some approaches to dodge and deal with the practical snags and what lies ahead!
文摘<div style="text-align:justify;"> <span style="font-family:Verdana;">Average Bangladeshis spend a significant amount of income on medicine. A reliable and fast online medicine delivery system is not ubiquitous. Most people buy medicine from the local Pharmacies. They need to go to medicine stores to buy the specific medicine prescribed by the specialized doctors. Sometimes all prescribed medicines are not available in local Pharmacies therefore people need to go to other areas to buy the medicines. It is very time consuming and people need to spend money as well for this. In our country, traffic jams are a very big problem. People waste longer time on the road due to traffic jams. Here most of the pharmacies are closed at night time but sometimes in an emergency situation medicine is very essential. In this case an online web based e-commerce medicine delivery system is needed very much. In addition, currently the whole world is suffering due to COVID-19 pandemic. Coronavirus is very contagious which we all know. In this pandemic time it is not risk free to go out to buy medicine from the pharmacies. Due to COVID-19, medicine scarcity is also an important issue. In this situation, an online medicine delivery system can play an important role. By considering the above mentioned facts, a reliable and fast online solution is proposed. This paper presents the development of a web based online medicine delivery system. A reliable, fast, safe and user-friendly online based e-commerce web application has been developed in this paper. Medicine delivery system has also been included with this proposed system. This platform is a dynamic web application built in Hypertext Preprocessor (PHP) based Laravel framework with a powerful back end. It is hosted on a dedicated Virtual Private Server (VPS). This system is lightning fast and optimized very well for searching engines. With the help of the developed platform, drugs will be available at one’s doorstep very fast, safely and reliably. In this system, users can choose a medicine section of their choices and go through all the items that the system provides. Users can then select the desired drug items, add them to cart and then proceed to payment. It has payment integration of Cash on Delivery (COD) systems. After developing the system it has been tested and it works fine. It is a one-stop solution where people can find various medicines including COVID-19 related medicines and other items in this online platform. Besides medicine, here you can also find other health care products like food supplements, birth control products, hair care products, skincare products, beauty products, etc. People can order their required medicines or other medical related available items from online and the delivery support will provide the products door to door for the users. Using this system now users can get their needed medicine without leaving home. They can save money and they do not need to go out in this pandemic situation to buy medicine. In this crucial situation, the online medicine delivery system is very helpful and it will act as a blessing for the people.</span> </div>
文摘With the continuous advancement of technology,the application of 3D printing technology in the field of dental medicine is becoming increasingly widespread.This article aims to explore the current applications and future potential of 3D printing technology in dental medicine and to analyze its benefits and challenges.It first introduces the current state of 3D printing technology in dental implants,crowns,bridges,orthodontics,and maxillofacial surgery.It then discusses the potential applications of 3D printing technology in oral tissue engineering,drug delivery systems,personalized dental prosthetics,and surgical planning.Finally,it analyzes the benefits of 3D printing technology in dental medicine,such as improving treatment accuracy and patient comfort,and shortening treatment times,while also highlighting the challenges faced,such as costs,material choices,and technical limitations.This article aims to provide a reference for professionals in the field of dental medicine and to promote the further application and development of 3D printing technology in this area.
基金Research Funding of Medical Association of Japanese-Chinese, Japan
文摘AIM: To investigate the permeability characteristics of rebamipide across intestinal mucosa, and examine the effects of some absorption enhancers on the permeability across the colonic tissue. Another purpose is to demonstrate the colon-specific delivery of rebamipide with or without absorption enhancers using chitosan capsule as a carrier. METHODS: The permeability of rebamipide was evaluated using an in vitro diffusion chamber system, and the effects of some absorption enhancers on the permeability via colon were further investigated. The release of rebamipide from chitosan or gelatin capsule was studied by Japan Pharmacopoeia rotating basket method. The colonic and plasma concentrations were analyzed by high performance liquid chromatography (HPLC) to evaluate colon-targeting action after oral administration of various dosage forms, and rebamipide with absorption enhancers in chitosan dosage forms. RESULTS: The permeability of rebamipide across the jejunal or ileal membranes was higher than the colonic membranes. Both sodium laurate (C12) and labrasol signifi cantly increased permeability across the colon membranes. On the other hand, the release of rebamipide from chitosan capsule was less than 10%totally within 6 h. The area under concentration-time profile of drug in the colon mucosa using chitosan capsules (AUCLI, 1 6011.2 ng·h/g) was 2.5 times and 4.4 times greater than using gelatin capsules and CMC suspension, respectively. Meanwhile, the area under concentration-time profile of drug in the plasma (AUCPL) was 1016.0 ng·h/mL for chitosan capsule, 1887.9 ng·h/mL for CMC suspension p and 2163.5 ng·h/mL for gelatin capsule. Overall, both AUCLI and AUCPL were increased when C12 was co-administrated, but the increase of AUCLI was much greater; the drug delivery index (DDI) was more than 1 compared with simple chitosan capsule group. CONCLUSION: There was a regional difference in the permeability of Rabamipide across the jejunum, ileum and the colon, and passive diffusion seems to be one of the major transport mechanisms of rebamipide. Absorption enhancers can increase the permeability of rebamipide across the colon tissue signifi cantly. In addition, chitosan capsule may be a useful carrier to deliver rebamipide to the colon specifi cally and the co-administration of C12 with rebamipide may also be very useful in local treatment.
基金Supported by National Institutes of Health,No. R01AA028905-01A1 (to Kirpich IA),No. 1F31AA028423-01A1 (to Warner JB),No. F32AA027950-01A1 (to Hardesty JE) and No. U01AA026934 (to McClain CJ)Jewish Heritage Fund for Excellence Research Enhancement Grant Program at the University of Louisville+1 种基金an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health,No. P20GM113226 (to McClain CJ)National Institute on Alcohol Abuse and Alcoholism of the National Institutes of Health,No. P50AA024337 (to McClain CJ)
文摘Alcohol-associated liver disease(ALD)is a common chronic liver disease and major contributor to liver disease-related deaths worldwide.Despite its prevalence,there are few effective pharmacological options for the severe stages of this disease.While much pre-clinical research attention is paid to drug development in ALD,many of these experimental therapeutics have limitations such as poor pharmacokinetics,poor efficacy,or off-target side effects due to systemic administration.One means of addressing these limitations is through liver-targeted drug delivery,which can be accomplished with different platforms including liposomes,polymeric nanoparticles,exosomes,bacteria,and adenoassociated viruses,among others.These platforms allow drugs to target the liver passively or actively,thereby reducing systemic circulation and increasing the‘effective dose’in the liver.While many studies,some clinical,have applied targeted delivery systems to other liver diseases such as viral hepatitis or hepatocellular carcinoma,only few have investigated their efficacy in ALD.This review provides basic information on these liver-targeting drug delivery platforms,including their benefits and limitations,and summarizes the current research efforts to apply them to the treatment of ALD in rodent models.We also discuss gaps in knowledge in the field,which when addressed,may help to increase the efficacy of novel therapies and better translate them to humans.
文摘The aim of this study was to evaluate the effect of coating of alginate-chitosan (AL:CS) beads on the colonic drug delivery. The AL:CS systems containing triamcinolone (TC) were coated with the HPMCP and Eudragit? L100 by immersion and by spraying methods. The drug release profile in simulated colonic medium was determined using 5% human fecal content suspension in 0.01 N buffer solution, pH 6.8. The systems coated with HPMCP showed a lower rate of drug delivery in simulated enteric medium. The delivery profile in simulated colonic medium followed zero-order kinetic. The coated systems provided a promising drug-delivery profile for application in colonic drug delivery.
文摘The contribution of the genetic make-up to an individual’s capacity has long been recognized in modern pharmacology as a crucial factor leading to therapy ineffciency and toxicity, negatively impacting the economic burden of healthcare and restricting the monitoring of diseases. In practical terms, and in order for drug prescription to be improved toward meeting the personalized medicine concept in drug delivery, the maximum clinical outcome for most, if not all, patients must be achieved, i.e. , pharmacotyping. Such a direction although promising and of high expectation from the society, it is however hardly to be afforded for healthcare worldwide. To overcome any existed hurdles, this means that practical clinical utility of personalized medicine decisions have to be documented and validated in the clinical setting. The latter implies for drug delivery the effcient implementation of previously gained in vivo pharmacology experience with pharmacogenomics knowledge. As an approach to work faster and in a more productive way, the elaboration of advanced physiologically based phar-macokinetics models is discussed. And in better clarifying this topic, the example of tamoxifen is thoroughly presented. Overall, pharmacotyping represents a major challenge in modern therapeutics for which pharmacologists need to work in successfully fulflling this task.
文摘背景:静电纺丝多孔纳米纤维是一种具有优良性能和可设计性的材料,将传统中药与其联合构建新型中药控释系统是实现中药的控制释放和提高生物利用度的有效途径,具有广阔应用前景。目的:综述静电纺丝中药控释系统的构建方法及其在医学领域相关研究进展。方法:以“静电纺丝,中药,药物载体,释药系统,组织工程,敷料”为中文检索词,以“electrospinning,traditional Chinese medicine,drug carrier,drug delivery system,tissue engineering,dressing”为英文检索词,检索中国知网、PubMed和Web of Science数据库的关于静电纺丝中药控释系统的研究应用文献,检索时间范围为2013-2023年,最终纳入62篇文献进行综述分析。结果与结论:①构建电纺多孔纤维中药控释系统的关键要素为基质材料、中药成分和载药方式。②电纺多孔纤维中药控释系统的构建可依据应用场景和治疗目的进行,首先选定中药成分种类,然后依据药物特性选择与其适配的聚合物基体及溶液,最后依据释药需求设计纤维结构并采用适宜的载药方式。③目前在电纺纤维中药控释系统中所应用的药剂以易制备纺丝溶液的植物中药提取物为主,缺少动物中药和矿物中药的系统研究。④共混载药是研究应用最多的载药方式,且通过对溶液理化性质的优化和负载物质多样性的选择不断扩展其释药特性和适应场景;同轴、多轴及顺序纺丝等载药方式可以制备具有多层成分性质不同的复合纤维,具有广阔发展前景。⑤电纺纤维中药控释系统早期应用集中于医用敷料方面,利用中药活性成分的抗菌止血功能,近年来发现中药某些成分能促进细胞黏附增殖分化,开启了组织工程领域的探索研究。⑥目前对电纺多孔纤维中药控释系统的研究主要集中在对负载材料、工艺、理化性能、生物性能的表征和优化上,而对机制的研究较少,其在临床中的应用尚未普及,在体内的不良反应尚不明了,对其降解行为与释药行为的相互影响也缺乏研究。⑦未来研究中需要考虑:通过改善中药与纺丝溶剂的理化性能和加大中药活性成分的提纯以扩大非植物中药的应用范围,对中药成分的治疗效果和作用机制进行全面研究,并阐明控释系统的降解行为与释药行为的相互影响规律,在更准确的机制下实现中药与电纺纳米纤维更完美的联合和应用。
基金This work is supported by National Key Research and Development Program of China(No.2022YFC3501905)Key project at central government level:The ability establishment of sustainable use for valuable Chinese medicine resources(No.2060302)+2 种基金National Natural Science Foundation of China(NSFC,No.82104076)Science and Technology Commission of Shanghai Municipal(STCSM,No.22S21902400,China)Medicine-Engineering joint foundation of Shanghai Jiao Tong University(No.YG2022QN025 and YG2022QN050,China).
文摘Cancer immunotherapy has garnered promise in tumor progression, invasion, and metastasis through establishing durable and memorable immunological activity. However, low response rates, adverse side effects, and high costs compromise the additional benefits for patients treated with current chemical and biological agents. Chinese herbal medicines (CHMs) are a potential treasure trove of natural medicines and are gaining momentum in cancer immunomodulation with multi-component, multi-target, and multi-pathway characteristics. The active ingredient extracted from CHMs benefit generalized patients through modulating immune response mechanisms. Additionally, the introduction of nanotechnology has greatly improved the pharmacological qualities of active ingredients through increasing the hydrophilicity, stability, permeability, and targeting characteristics, further enhancing anti-cancer immunity. In this review, we summarize the mechanism of active ingredients for cancer immunomodulation, highlight nano-formulated deliveries of active ingredients for cancer immunotherapy, and provide insights into the future applications in the emerging field of nano-formulated active ingredients of CHMs.