A k coloring(not necessarily proper) of vertices of a graph is called acyclic, if for every pair of distinct colors i and j the subgraph induced by the edges whose endpoints have colors i and j is acyclic. We consider...A k coloring(not necessarily proper) of vertices of a graph is called acyclic, if for every pair of distinct colors i and j the subgraph induced by the edges whose endpoints have colors i and j is acyclic. We consider some generalized acyclic k colorings, namely, we require that each color class induces an acyclic or bounded degree graph. Mainly we focus on graphs with maximum degree 5. We prove that any such graph has an acyclic 5 coloring such that each color class induces an acyclic graph with maximum degree at most 4. We prove that the problem of deciding whether a graph G has an acyclic 2 coloring in which each color class induces a graph with maximum degree at most 3 is NP complete, even for graphs with maximum degree 5. We also give a linear time algorithm for an acyclic t improper coloring of any graph with maximum degree d assuming that the number of colors is large enough.展开更多
基金supported by the Minister of Science and Higher Education of Poland (Grant No. JP2010009070)
文摘A k coloring(not necessarily proper) of vertices of a graph is called acyclic, if for every pair of distinct colors i and j the subgraph induced by the edges whose endpoints have colors i and j is acyclic. We consider some generalized acyclic k colorings, namely, we require that each color class induces an acyclic or bounded degree graph. Mainly we focus on graphs with maximum degree 5. We prove that any such graph has an acyclic 5 coloring such that each color class induces an acyclic graph with maximum degree at most 4. We prove that the problem of deciding whether a graph G has an acyclic 2 coloring in which each color class induces a graph with maximum degree at most 3 is NP complete, even for graphs with maximum degree 5. We also give a linear time algorithm for an acyclic t improper coloring of any graph with maximum degree d assuming that the number of colors is large enough.