A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are con...A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.展开更多
The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication ...The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication medium where it could be intercepted by unauthorized entities.This study provides an approach to color image encryption that could find practical use in various contexts.The proposed method,which combines four chaotic systems,employs singular value decomposition and a chaotic sequence,making it both secure and compression-friendly.The unified average change intensity,the number of pixels’change rate,information entropy analysis,correlation coefficient analysis,compression friendliness,and security against brute force,statistical analysis and differential attacks are all used to evaluate the algorithm’s performance.Following a thorough investigation of the experimental data,it is concluded that the proposed image encryption approach is secure against a wide range of attacks and provides superior compression friendliness when compared to chaos-based alternatives.展开更多
We devise a color image encryption scheme via combining hyperchaotic map,cross-plane operation and gene theory.First,the hyperchaotic map used in the encryption scheme is analyzed and studied.On the basis of the dynam...We devise a color image encryption scheme via combining hyperchaotic map,cross-plane operation and gene theory.First,the hyperchaotic map used in the encryption scheme is analyzed and studied.On the basis of the dynamics of hyperchaotic map,a color image encryption scheme is designed.At the end of the encryption process,a DNA mutation operation is used to increase the encoding images’randomness and to improve the encryption algorithm’s security.Finally,simulation experiments,performance analysis,and attack tests are performed to prove the effectiveness and security of the designed algorithm.This work provides the possibility of applying chaos theory and gene theory in image encryption.展开更多
Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them....Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional(4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes,and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication.展开更多
In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic ...In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic sequences, a novel color image encryption algorithm is proposed by employing a hybrid model of bidirectional circular permutation and DNA masking. In this scheme, the pixel positions of image are scrambled by circular permutation, and the pixel values are substituted by DNA sequence operations. In the DNA sequence operations, addition and substraction operations are performed according to traditional addition and subtraction in the binary, and two rounds of addition rules are used to encrypt the pixel values. The simulation results and security analysis show that the hyperchaotic map is suitable for image encryption, and the proposed encryption algorithm has good encryption effect and strong key sensitivity. It can resist brute-force attack, statistical attack, differential attack, known-plaintext, and chosen-plaintext attacks.展开更多
The substitution box(S-box)is a fundamentally important component of symmetric key cryptosystem.An S-box is a primary source of non-linearity in modern block ciphers,and it resists the linear attack.Various approaches...The substitution box(S-box)is a fundamentally important component of symmetric key cryptosystem.An S-box is a primary source of non-linearity in modern block ciphers,and it resists the linear attack.Various approaches have been adopted to construct S-boxes.S-boxes are commonly constructed over commutative and associative algebraic structures including Galois fields,unitary commutative rings and cyclic and non-cyclic finite groups.In this paper,first a non-associative ring of order 512 is obtained by using computational techniques,and then by this ring a triplet of 8×8 S-boxes is designed.The motivation behind the designing of these S-boxes is to upsurge the robustness and broaden the key space due to non-associative and noncommutative behavior of the algebraic structure under consideration.A novel color image encryption application is anticipated in which initially these 3 S-boxes are being used to produce confusion in three layers of a standard RGB image.However,for the sake of diffusion 3D Arnold chaotic map is used in the proposed encryption scheme.A comparison with some of existing chaos and S-box dependent color image encryption schemes specs the performance results of the anticipated RGB image encryption and observed as approaching the standard prime level.展开更多
For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the...For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the corresponding phase hologram is obtained by holographic technology and the watermark is self-embedded in the frequency domain.Secondly,by applying the Hilbert transform principle and genetic center law,a complete set of image encryption algorithms is constructed to realize the encryption of image information.Finally,simulation results and security analysis indicate that the scheme can effectively encrypt and decrypt image information and realize the copyright protection of information.The introduced scheme can provide some support for relevant theoretical research,and has practical significance.展开更多
Nowadays,high-resolution images pose several challenges in the context of image encryption.The encryption of huge images’file sizes requires high computational resources.Traditional encryption techniques like,Data En...Nowadays,high-resolution images pose several challenges in the context of image encryption.The encryption of huge images’file sizes requires high computational resources.Traditional encryption techniques like,Data Encryption Standard(DES),and Advanced Encryption Standard(AES)are not only inefficient,but also less secure.Due to characteristics of chaos theory,such as periodicity,sensitivity to initial conditions and control parameters,and unpredictability.Hence,the characteristics of deoxyribonucleic acid(DNA),such as vast parallelism and large storage capacity,make it a promising field.This paper presents an efficient color image encryption method utilizing DNA encoding with two types of hyper-chaotic maps.The proposed encryption method comprises three steps.The first step initializes the conditions for generating Lorenz and Rossler hyper-chaotic maps using a plain image Secure Hash Algorithm(SHA-256/384).The second step performs a confusion procedure by scrambling the three components of the image(red,green,and blue)using Lorenz hyper-chaotic sequences.Finally,the third step combines three approaches to encrypt the scrambled components for diffusion:DNA encoding/decoding,addition operation between components,and XORing with Rossler hyper-chaotic sequences.The simulation results indicate that the suggested encryption algorithm satisfies the requirements of security.The entropy value of confusion and diffusion is 7.997,the key space is 2200,and the correlation coefficient is nearly zero.The efficacy of the proposed method has been verified through numerous evaluations,and the results show its resistance and effectiveness against several attacks,like statistical and brute-force attacks.Finally,the devised algorithm vanquishes other relevant color image encryption algorithms.展开更多
A novel color image encryption algorithm based on dynamic deoxyribonucleic acid(DNA)encoding and chaos is presented.A three-neuron fractional-order discrete Hopfield neural network(FODHNN)is employed as a pseudo-rando...A novel color image encryption algorithm based on dynamic deoxyribonucleic acid(DNA)encoding and chaos is presented.A three-neuron fractional-order discrete Hopfield neural network(FODHNN)is employed as a pseudo-random chaotic sequence generator.Its initial value is obtained with the secret key generated by a fiveparameter external key and a hash code of the plain image.The external key includes both the FODHNN discrete step size and order.The hash is computed with the SHA-2 function.This ensures a large secret key space and improves the algorithm sensitivity to the plain image.Furthermore,a new three-dimensional projection confusion method is proposed to scramble the pixels among red,green,and blue color components.DNA encoding and diffusion are used to diffuse the image information.Pseudo-random sequences generated by FODHNN are employed to determine the encoding rules for each pixel and to ensure the diversity of the encoding methods.Finally,confusion II and XOR are used to ensure the security of the encryption.Experimental results and the security analysis show that the proposed algorithm has better performance than those reported in the literature and can resist typical attacks.展开更多
In this paper, a new image encryption scheme is presented based on time-delay chaos synchronization. Compared with existing methods, a new method is pro- posed and a lot of coupled items can be taken as zero items to ...In this paper, a new image encryption scheme is presented based on time-delay chaos synchronization. Compared with existing methods, a new method is pro- posed and a lot of coupled items can be taken as zero items to simplify the whole system. A simple linear controller is introduced to realize time-delay chaos synchronization and image encryption. The positions of the image pixels are firstly shuffled and then be hidden in the cartier image. The address codes of the chaotic sequences are adopted to avoid the disturbances induced by the initial value and computer accuracy error. Simulation results for color image are provided to illustrate the effectiveness of the proposed method. It can be seen clearly that the system can converge quickly and the image can be encrypted rapidly.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62105004 and 52174141)the College Student Innovation and Entrepreneurship Fund Project(Grant No.202210361053)+1 种基金Anhui Mining Machinery and Electrical Equipment Coordination Innovation Center,Anhui University of Science&Technology(Grant No.KSJD202304)the Anhui Province Digital Agricultural Engineering Technology Research Center Open Project(Grant No.AHSZNYGC-ZXKF021)。
文摘A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.
基金funded by Deanship of Scientific Research at King Khalid University under Grant Number R.G.P.2/86/43.
文摘The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication medium where it could be intercepted by unauthorized entities.This study provides an approach to color image encryption that could find practical use in various contexts.The proposed method,which combines four chaotic systems,employs singular value decomposition and a chaotic sequence,making it both secure and compression-friendly.The unified average change intensity,the number of pixels’change rate,information entropy analysis,correlation coefficient analysis,compression friendliness,and security against brute force,statistical analysis and differential attacks are all used to evaluate the algorithm’s performance.Following a thorough investigation of the experimental data,it is concluded that the proposed image encryption approach is secure against a wide range of attacks and provides superior compression friendliness when compared to chaos-based alternatives.
基金the National Natural Science Foundation of China(Grant No.62061014)the Provincial Natural Science Foundation of Liaoning(Grant No.2020-MS-274)the Basic Scientific Research Projects of Colleges and Universities of Liaoning Province,China(Grant No.LJKZ0545).
文摘We devise a color image encryption scheme via combining hyperchaotic map,cross-plane operation and gene theory.First,the hyperchaotic map used in the encryption scheme is analyzed and studied.On the basis of the dynamics of hyperchaotic map,a color image encryption scheme is designed.At the end of the encryption process,a DNA mutation operation is used to increase the encoding images’randomness and to improve the encryption algorithm’s security.Finally,simulation experiments,performance analysis,and attack tests are performed to prove the effectiveness and security of the designed algorithm.This work provides the possibility of applying chaos theory and gene theory in image encryption.
基金supported by the National Natural Science Foundation of China(Grant Nos.61203094 and 61305042)the Natural Science Foundation of the United States(Grant Nos.CNS-1253424 and ECCS-1202225)+3 种基金the Science and Technology Foundation of Henan Province,China(Grant No.152102210048)the Foundation and Frontier Project of Henan Province,China(Grant No.162300410196)the Natural Science Foundation of Educational Committee of Henan Province,China(Grant No.14A413015)the Research Foundation of Henan University,China(Grant No.xxjc20140006)
文摘Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional(4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes,and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication.
基金supported by the National Natural Science Foundation of China(Grant Nos.61161006 and 61573383)
文摘In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic sequences, a novel color image encryption algorithm is proposed by employing a hybrid model of bidirectional circular permutation and DNA masking. In this scheme, the pixel positions of image are scrambled by circular permutation, and the pixel values are substituted by DNA sequence operations. In the DNA sequence operations, addition and substraction operations are performed according to traditional addition and subtraction in the binary, and two rounds of addition rules are used to encrypt the pixel values. The simulation results and security analysis show that the hyperchaotic map is suitable for image encryption, and the proposed encryption algorithm has good encryption effect and strong key sensitivity. It can resist brute-force attack, statistical attack, differential attack, known-plaintext, and chosen-plaintext attacks.
文摘The substitution box(S-box)is a fundamentally important component of symmetric key cryptosystem.An S-box is a primary source of non-linearity in modern block ciphers,and it resists the linear attack.Various approaches have been adopted to construct S-boxes.S-boxes are commonly constructed over commutative and associative algebraic structures including Galois fields,unitary commutative rings and cyclic and non-cyclic finite groups.In this paper,first a non-associative ring of order 512 is obtained by using computational techniques,and then by this ring a triplet of 8×8 S-boxes is designed.The motivation behind the designing of these S-boxes is to upsurge the robustness and broaden the key space due to non-associative and noncommutative behavior of the algebraic structure under consideration.A novel color image encryption application is anticipated in which initially these 3 S-boxes are being used to produce confusion in three layers of a standard RGB image.However,for the sake of diffusion 3D Arnold chaotic map is used in the proposed encryption scheme.A comparison with some of existing chaos and S-box dependent color image encryption schemes specs the performance results of the anticipated RGB image encryption and observed as approaching the standard prime level.
基金Project supported by the National Natural Science Foundation of China(Grant No.62061014)。
文摘For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the corresponding phase hologram is obtained by holographic technology and the watermark is self-embedded in the frequency domain.Secondly,by applying the Hilbert transform principle and genetic center law,a complete set of image encryption algorithms is constructed to realize the encryption of image information.Finally,simulation results and security analysis indicate that the scheme can effectively encrypt and decrypt image information and realize the copyright protection of information.The introduced scheme can provide some support for relevant theoretical research,and has practical significance.
基金This research is funded by Universiti SainsMalaysia(USM)via an external Grant Number(304/PNAV/650958/U154).
文摘Nowadays,high-resolution images pose several challenges in the context of image encryption.The encryption of huge images’file sizes requires high computational resources.Traditional encryption techniques like,Data Encryption Standard(DES),and Advanced Encryption Standard(AES)are not only inefficient,but also less secure.Due to characteristics of chaos theory,such as periodicity,sensitivity to initial conditions and control parameters,and unpredictability.Hence,the characteristics of deoxyribonucleic acid(DNA),such as vast parallelism and large storage capacity,make it a promising field.This paper presents an efficient color image encryption method utilizing DNA encoding with two types of hyper-chaotic maps.The proposed encryption method comprises three steps.The first step initializes the conditions for generating Lorenz and Rossler hyper-chaotic maps using a plain image Secure Hash Algorithm(SHA-256/384).The second step performs a confusion procedure by scrambling the three components of the image(red,green,and blue)using Lorenz hyper-chaotic sequences.Finally,the third step combines three approaches to encrypt the scrambled components for diffusion:DNA encoding/decoding,addition operation between components,and XORing with Rossler hyper-chaotic sequences.The simulation results indicate that the suggested encryption algorithm satisfies the requirements of security.The entropy value of confusion and diffusion is 7.997,the key space is 2200,and the correlation coefficient is nearly zero.The efficacy of the proposed method has been verified through numerous evaluations,and the results show its resistance and effectiveness against several attacks,like statistical and brute-force attacks.Finally,the devised algorithm vanquishes other relevant color image encryption algorithms.
基金Project supported by the National Natural Science Foundation of China(No.11971032)the Science and Technology Program of Guangzhou,China(No.201707010031)。
文摘A novel color image encryption algorithm based on dynamic deoxyribonucleic acid(DNA)encoding and chaos is presented.A three-neuron fractional-order discrete Hopfield neural network(FODHNN)is employed as a pseudo-random chaotic sequence generator.Its initial value is obtained with the secret key generated by a fiveparameter external key and a hash code of the plain image.The external key includes both the FODHNN discrete step size and order.The hash is computed with the SHA-2 function.This ensures a large secret key space and improves the algorithm sensitivity to the plain image.Furthermore,a new three-dimensional projection confusion method is proposed to scramble the pixels among red,green,and blue color components.DNA encoding and diffusion are used to diffuse the image information.Pseudo-random sequences generated by FODHNN are employed to determine the encoding rules for each pixel and to ensure the diversity of the encoding methods.Finally,confusion II and XOR are used to ensure the security of the encryption.Experimental results and the security analysis show that the proposed algorithm has better performance than those reported in the literature and can resist typical attacks.
基金Acknowledgments Supported by the National Natural Science Foundation of China (Grant Nos. 51375293, 31570998), and the Science and Technology Commission of Shanghai Municipality (Grant No. 16511108600).
文摘In this paper, a new image encryption scheme is presented based on time-delay chaos synchronization. Compared with existing methods, a new method is pro- posed and a lot of coupled items can be taken as zero items to simplify the whole system. A simple linear controller is introduced to realize time-delay chaos synchronization and image encryption. The positions of the image pixels are firstly shuffled and then be hidden in the cartier image. The address codes of the chaotic sequences are adopted to avoid the disturbances induced by the initial value and computer accuracy error. Simulation results for color image are provided to illustrate the effectiveness of the proposed method. It can be seen clearly that the system can converge quickly and the image can be encrypted rapidly.