[Objective] In this study, the relationship between the pigments and the color expression of leaves of colored-leaf plants was discussed. [Method] The colors of leaf blades of 6 kinds of plants were analyzed with the ...[Objective] In this study, the relationship between the pigments and the color expression of leaves of colored-leaf plants was discussed. [Method] The colors of leaf blades of 6 kinds of plants were analyzed with the Royal Horticultural Soci-ety Colour Chart. The chlorophyl content, carotenoids content and anthocyanin con-tent in leaf blades were determined. In addition, the color types of leaf blades, kinds of pigments, pigment contents and pigment distributions of 6 kinds of plants were compared. [Result] The chlorophyl contents ranked as Populus canadensis Moench (green leaves) 〉 Populus deltoids cv. Zhonghuahongye (purple green leaves) 〉 Populus euramericana cv. Quanhong (red leaves); Acer palmatum Thunb. (green leaves) 〉 Acer palmatum cv. Atropurpureum (purple red leaves) 〉 Acer pal-matum Thunb. cv. Atropurpureum (red leaves). The ranking of anthocyanin contents was just opposite. The chlorophyl content was negatively related to the anthocyanin content. The leaf color of plants is determined by various pigments. The more the chlorophyl is, the greener the leaf is. The more the anthocyanin is, the redder the leaf is. In the colored-leaf plants, the chlorophyl content represents about 80% of the content of pigments, the carotenoids content represents about 17%, and the an-thocyanin represents about 3%. There is a difference in the chlorophyl content be-tween colored-leaf plants and green plants. However, the relatively low chlorophyl content wil not hamper the normal life activities of colored-leaf plants. [Conclusion] We hoped to provide reference and basis for the production and landscaping of col-ored-leaf plants.展开更多
The ecological characteristics and fiber structure of the colored cotton were introduced briefly. The color changing mechanisms of the pigments extracted from colored cottons and some plants were discussed with the re...The ecological characteristics and fiber structure of the colored cotton were introduced briefly. The color changing mechanisms of the pigments extracted from colored cottons and some plants were discussed with the results of different experiments, which could offer an academic reference for the color fixations of the colored cotton textile produces and promote the development of the natural colored cotton industry.展开更多
The genetic control of fiber pigment color in naturally colored cotton was studied. The expression of brown and green fiber color was controlled by incompletely dominant single genes and incompletely dominant major ge...The genetic control of fiber pigment color in naturally colored cotton was studied. The expression of brown and green fiber color was controlled by incompletely dominant single genes and incompletely dominant major genes, respectively. Production and accumulation of the fiber pigment were related to special expression of enzymatic genes for pigment synthesis in fiber cells. At the stage of fiber lengthening, naturally colored cotton, like white cotton, appeared purely white. But when fiber cell walls entered the thickening stage, pigment appeared by degrees. When the fiber was completely matured (on boll dehiscence), the color reached its darkest level. After wetting process treatment, the hues of the fiber pigment changed in regular patterns. The hue circle for brown and green cotton changed in the opposite direction with wetting process treatment. In general, the treated cotton color and luster became dark and vivid, and this trend provided the possibility for enhancing the fiber quality by suitable environmental friendly finishing. The analysis showed that the color and luster of the cotton may be controlled by a series of pigments which show different chemical performance.展开更多
To separate the proteins related to pigment synthesis in green colored fiber (GCF), we performed a comparative proteomic analysis to identify the differentially expressed proteins between green cotton fiber and a wh...To separate the proteins related to pigment synthesis in green colored fiber (GCF), we performed a comparative proteomic analysis to identify the differentially expressed proteins between green cotton fiber and a white near-isogenic line (NIL). One differential spot identified as phenylocumaran benzylic ether redutase-like protein (PCBER) was expressed only in GCF, but was not found in white colored fiber (WCF) at any time points. Since PCBER was a key enzyme in lignans biosynthesis, total lignans were extracted from GCF and WCF and their content was determined by using a chromotropic acid spectrophotometric method. The results showed that total lignans content in GCF was significantly higher than that in WCF. The qPCR analysis for two PLR genes associated with lignans biosynthesis showed that the expression level of two genes was much higher in GCF than that in WCF at 24 and 27 days post anthesis (DPA), which may be responsible for the higher lignans content in GCF. Our study suggested that PCBER and lignans may be responsible for the color difference between GCF and WCF. Additionally, p-dimethylaminocinnamaldehyde (DMACA) staining demonstrated that the pigment in GCF was not proanthocyanidins, and was different from that in brown colored fiber (BCF). This study provided new clues for uncovering the molecular mechanisms related to pigment biosynthesis in GCF.展开更多
The red ceramic pigment is widely used in industrial production, but the pigments with pure color and bright red performance are rare. Therefore, it is important to study and develop new red ceramic pigment with perfe...The red ceramic pigment is widely used in industrial production, but the pigments with pure color and bright red performance are rare. Therefore, it is important to study and develop new red ceramic pigment with perfect color performance. This paper reports the preparation of Cr-doped YAlO_3 red ceramic pigment rendering by sol-gel method with high temperature resistance, good color and proposed color mechanism. The prepared samples were characterized by XRD, SEM, EDS and UV-vis, and the effects of Cr on the crystal structure, color rendering properties and color mechanism were discussed. The results showed that the optimum concentration of coloring agent(Cr) in Cr:YAlO_3 red ceramic pigment was 3 at.%. The main color mechanism was also discussed. Compared with the solid phase sintering and precipitation methods for the synthesis of red ceramic pigment, the sol-gel method possessed obvious advantages, such as perfect mixing of the raw materials, uniform dispersion of doping ions and the pure color.展开更多
The objective of this study was to evaluate the effects of feeding pigmented feed (50 ppm astaxanthin) to diploid or triploid Arctic charr, Salvelinus alpinus, on growth rate, color of fillets, and the variability of ...The objective of this study was to evaluate the effects of feeding pigmented feed (50 ppm astaxanthin) to diploid or triploid Arctic charr, Salvelinus alpinus, on growth rate, color of fillets, and the variability of color within fillets. Arctic charr with an average weight of 419.9 g ± 83.3 g, including both diploid (n = 72) and triploid (n = 72) fish, were allotted to each treatment: 0, 3 or 6 months of pigmented feed before slaughter. Color assessment was made using a portable reflected light colorimeter in the CIE 1976 L* a* b* color system mode. Feeding a pigmented diet to Arctic charr delayed sexual maturity in male Arctic charr and to a certain extent in females, but also slightly reduced the rate of growth. With increasing time on the pigmented diet, color parameters of the flesh increased as well as the variability in color. Triploid fish had more intense color assessments for each dietary treatment than the diploid fish.展开更多
Purpose : To investigate correlation of variation in the exon 5 of red and green pigment genes with color vision defects.Methods : Exon 5 of the red and green pigment genes in 11 protans, 19 deutans and 38 normal cont...Purpose : To investigate correlation of variation in the exon 5 of red and green pigment genes with color vision defects.Methods : Exon 5 of the red and green pigment genes in 11 protans, 19 deutans and 38 normal controls were analyzed by heteroduplux-SSCP analysis.Results : In all 11 protans and 8 of the 19 deutans, defects of the red or green pigment gene could be identified. The C polymorphism (A/C at codon 283) in green pigment gene was present in 8 of 44 trichromats and 5 of 24 dichromats. Specific electrophoretic bands were found in 2 normal controls and a deutan.Conclusions: Variation in the exon 5 of the red and green pigment genes is the most common cause for color vision defects. Heteroduplex-SSCP analysis is a suitable way in screening specific variation in visual pigment genes. Eye Science 1998; 14 : 130 - 133.展开更多
Preparation and photo-patterning characteristics of organic-inorganic hybrid thin film containing latent pigment by using photo-acid-generator (PAG) and microwave irradiation have been investigated. The acrylic thin f...Preparation and photo-patterning characteristics of organic-inorganic hybrid thin film containing latent pigment by using photo-acid-generator (PAG) and microwave irradiation have been investigated. The acrylic thin film modified with methoxysilane containing PAG was formed on a glass substrate and irradiated with ultraviolet rays to promote sol-gel reaction by catalytic action of acid which was generated from PAG. And then the film was hardened with microwave irradiation, yielding organic-inorganic hybrid polymer film having hardness, highly transparency and strong adhesion with a glass substrate. Since this reaction only occurred in the optically (UV) irradiated regions, by exploiting the difference between the adhesivenesses of these regions photo-irradiated through photomask with a glass substrate, it was possible to form a patterned film with pitch of 100 to 50 μm by a simple lift-off method. A pigment-containing film using latent pigments (with subtractive three primary colors of coloring materials) and a patterned film were prepared, and it was possible to make these films multi-colored by varying the mixing ratio of the pigments. This multi-colored film-preparation method is effective for simply and efficiently forming a color-filter film by applying optical and microwave irradiation.展开更多
Sea cucumber, Apostichopus japonicus(Selenka), is a commercially important marine species in China. Among the differently colored varieties sold in China, white and purple sea cucumbers have the greatest appeal to c...Sea cucumber, Apostichopus japonicus(Selenka), is a commercially important marine species in China. Among the differently colored varieties sold in China, white and purple sea cucumbers have the greatest appeal to consumers. Identification of the pigments that may contribute to the formation of different color morphs of sea cucumbers will provide a scientific basis for improving the cultivability of desirable color morphs. In this study,sea cucumbers were divided into four categories according to their body color: white, light green, dark green, and purple. The pigment composition and contents in the four groups were analyzed by high performance liquid chromatography(HPLC). The results show that the pigment contents differed significantly among the white, lightgreen, dark-green, and purple sea cucumbers, and there were fewer types of pigments in white sea cucumber than in the other color morphs. The only pigments detected in white sea cucumbers were guanine and pteroic acid.Guanine and pteroic acid are structural colors, and they were also detected in light-green, dark-green, and purple sea cucumbers. Every pigment detected, except for pteroic acid, was present at a higher concentration in purple morphs than in the other color morphs. The biological color pigments melanin, astaxanthin, β-carotene, and lutein were detected in light-green, dark-green, and purple sea cucumbers. While progesterone and lycopene,which are also biological color pigments, were not detected in any of the color morphs. Melanin was the major pigment contributing to body color, and its concentration increased with deepening color of the sea cucumber body. Transmission electron microscopy analyses revealed that white sea cucumbers had the fewest epidermal melanocytes in the body wall, and their melanocytes contained fewer melanosomes as well as non-pigmented pre-melanosomes. Sea cucumbers with deeper body colors contained more melanin granules. In the body wall of dark-green and purple sea cucumbers, melanin granules were secreted out of the cell. The results of this study provide evidence for the main factors responsible for differences in coloration among white, light-green, darkgreen, and purple sea cucumbers, and also provide the foundation for further research on the formation of body color in sea cucumber, A. japonicus.展开更多
During 1998 - 1999, the course of the berry coloring and the development of the pigment cells from veraison to ripeness were studied by freeze sectioning 43 accessions of 12 Vitis species (including 10 Chinese wild sp...During 1998 - 1999, the course of the berry coloring and the development of the pigment cells from veraison to ripeness were studied by freeze sectioning 43 accessions of 12 Vitis species (including 10 Chinese wild species). External observation showed that the berries of most species began coloring on the fruit top surface or on the sun-lit surface, and the berry surface color was evenly distributed when the berry was ripe. Internal observation revealed that the pigment cells in a few layers between cuticle and sub-cuticle colored first, the cuticle colored from inner layers to outer layers while the sub-cuticle from outer to inner, and the cuticle cells began coloring a little earlier than the sub-cuticle ones in most species. The pigment cells developed unevenly during the berry ripening. In the beginning of berry coloring, the cell pigment density among the layers or among the cells in the same layer was different. Both the numbers of the pigmented cells and the cell pigment density increased during the berry coloring, while the former lasted a short time; however, the latter kept increasing from veraison to ripeness, and they reached the deepest color when the berry was ripe.展开更多
Data from three cruises conducted in the Zhujiang River (ZR), coastal waters of Guangdong (CWGD) and the northern South China Sea (NSCS) during 2003 and 2004 were examined for assessing the relative importance o...Data from three cruises conducted in the Zhujiang River (ZR), coastal waters of Guangdong (CWGD) and the northern South China Sea (NSCS) during 2003 and 2004 were examined for assessing the relative importance of pigment composition and packaging effect in modifying the specific absorption coefficients of phytoplankton. The three survey regions differ widely in their phytoplankton community with large cells dominating the ZR and CWGD waters and small cells dominating the NSCS region. Variations in the size structure and the accessory pigments have much effect on the chlorophyll a-specific absorption coefficient of phytoplankton. The size index accounted for about 42% and 33% of the variation of the specific absorption coefficient at 440 and 675 nm, respectively. Using the multiple regression analysis approach, pigment concentrations for each sample were calculated. The accessory pigments other than chlorophyll a contribute to absorption mainly in the blue - to - green region of the spectrum and their absorptions account for about 44%, 43% and 53% on the average of the total phytoplankton absorption at 440 nm for the ZR, CWGD and NSCS regions. Among the accessory pigments, the photosynthetic carotenoids (noted PSC) play a dominant role in the ZR and CWGD waters, while in the NSCS the nonphotosynthetic carotenoids (noted PPG) as well as PSC have important contributions. Because the variations of both the size structure and accessory pigments in algal populations contributed to the variability of the specific absorption coefficient in the study regions, these factors may be considered explicitly in future bio - optical algorithms to derive chlorophyll a concentration more accurately.展开更多
As sessile organisms, plants have to be subjected to insect attack. Over the long course of evolution, plants have produced many mechanisms to resist this biotic stress such as pigment accumulation. Pigment levels det...As sessile organisms, plants have to be subjected to insect attack. Over the long course of evolution, plants have produced many mechanisms to resist this biotic stress such as pigment accumulation. Pigment levels determined depth and distribution of leaf color, thereby indirectly or directly affecting the behavior of insect attack. Therefore, understanding the mechanism of mutual recognition between leaf color and insect will provide important theoretical insight for the cultivation and improvement of new cultivars. This paper outlines leaf-color formation and the effect of pigment on the behavior of insect attack, and explores the challenge of research in the interaction between leaf color and insect, as soon as the potential direction for future development. This will give a broad background for improvements of colored plants with resistance to insect attack.展开更多
Beetles in the family Coccinellidae, commonly known as ladybugs, lady beetles, or ladybirds, are easily identifiable and popular beneficial insects. Current research aims to support conservation efforts of beneficial ...Beetles in the family Coccinellidae, commonly known as ladybugs, lady beetles, or ladybirds, are easily identifiable and popular beneficial insects. Current research aims to support conservation efforts of beneficial insects in agroecosystems by exploring genetic processes related to nutrition. As a part of this research, colonies of Coleomegilla maculata have been maintained in culture and inbred over many generations since 2009. One result of this inbreeding has been the discovery of novel morphological phenotypes unique to laboratory strains or present in wild populations at such low levels that they have not yet been described. One such phenotype is described here. The strain described here, ye (yellow elytra and eyes) was characterized with classical Mendelian breeding and digital image analysis. This phenotype differs from wild populations by possessing yellow pigment in the elytra and pale grey to white eyes. In contrast, wild populations of C. maculata possess pink or red pigmented elytra with black spots, and black eyes. C. maculata is not known to exhibit polymorphism in the field. Inheritance is autosomal and recessive. This species was not previously known to exhibit the dramatic variation of color described here. The strain is stable in the homozygous recessive form, and retains laboratory rearing characteristics similar to the wild type laboratory strain.展开更多
In this research ceramic pigments have been synthesized with crystalline spinel structure and chromium based with a stoichiometry ACr2O4. A was an element with +2 valence metal, in this case, metals were zinc and iron...In this research ceramic pigments have been synthesized with crystalline spinel structure and chromium based with a stoichiometry ACr2O4. A was an element with +2 valence metal, in this case, metals were zinc and iron, these pigments have been synthesized by non-conventional methods like the co-precipitation assisted by ultrasound and high milling energy. Pigments were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), spectrophotometry, and colorimetric CIELab method. Results showed that it was possible to obtain a crystallin desired structure at temperatures below 900°C by non-conventional methods. These results showed the advantages of ceramic pigments obtained by alternative routes, because it was possible to have a better control over stoichiometry and colorimetric structure properties. Furthermore, they were obtained at temperatures lower than those used by the traditional ceramic route.展开更多
Chlorophylls and carotenoids are the main pigments in leaves of higher plants. They combine to give color to leaves. Based on the CIE1931 chromaticity coordinates of chlorophylls and cartotenoids, which were obtained ...Chlorophylls and carotenoids are the main pigments in leaves of higher plants. They combine to give color to leaves. Based on the CIE1931 chromaticity coordinates of chlorophylls and cartotenoids, which were obtained from their classical absorption spectra and the law of additive color mixing, the theoretical color gamut of higher plant leaves is determined. The theoretical prediction agrees well with our experimental results.展开更多
基金Supported by the Technology Research and Development Program of Beijing Vocational College of Agriculture(XY-YF-13-39)~~
文摘[Objective] In this study, the relationship between the pigments and the color expression of leaves of colored-leaf plants was discussed. [Method] The colors of leaf blades of 6 kinds of plants were analyzed with the Royal Horticultural Soci-ety Colour Chart. The chlorophyl content, carotenoids content and anthocyanin con-tent in leaf blades were determined. In addition, the color types of leaf blades, kinds of pigments, pigment contents and pigment distributions of 6 kinds of plants were compared. [Result] The chlorophyl contents ranked as Populus canadensis Moench (green leaves) 〉 Populus deltoids cv. Zhonghuahongye (purple green leaves) 〉 Populus euramericana cv. Quanhong (red leaves); Acer palmatum Thunb. (green leaves) 〉 Acer palmatum cv. Atropurpureum (purple red leaves) 〉 Acer pal-matum Thunb. cv. Atropurpureum (red leaves). The ranking of anthocyanin contents was just opposite. The chlorophyl content was negatively related to the anthocyanin content. The leaf color of plants is determined by various pigments. The more the chlorophyl is, the greener the leaf is. The more the anthocyanin is, the redder the leaf is. In the colored-leaf plants, the chlorophyl content represents about 80% of the content of pigments, the carotenoids content represents about 17%, and the an-thocyanin represents about 3%. There is a difference in the chlorophyl content be-tween colored-leaf plants and green plants. However, the relatively low chlorophyl content wil not hamper the normal life activities of colored-leaf plants. [Conclusion] We hoped to provide reference and basis for the production and landscaping of col-ored-leaf plants.
文摘The ecological characteristics and fiber structure of the colored cotton were introduced briefly. The color changing mechanisms of the pigments extracted from colored cottons and some plants were discussed with the results of different experiments, which could offer an academic reference for the color fixations of the colored cotton textile produces and promote the development of the natural colored cotton industry.
基金This work was supported by Innovation and Utilization of Specially Good Germplasm Material of Naturally Colored Cotton of the“863”Plan,China(2001AA241089)Research on Breeding of New Variety for Naturally Colored Cotton and Its Further Utilization of Zhejiang Key Project of Science and Technology,China(991102310,010007024).
文摘The genetic control of fiber pigment color in naturally colored cotton was studied. The expression of brown and green fiber color was controlled by incompletely dominant single genes and incompletely dominant major genes, respectively. Production and accumulation of the fiber pigment were related to special expression of enzymatic genes for pigment synthesis in fiber cells. At the stage of fiber lengthening, naturally colored cotton, like white cotton, appeared purely white. But when fiber cell walls entered the thickening stage, pigment appeared by degrees. When the fiber was completely matured (on boll dehiscence), the color reached its darkest level. After wetting process treatment, the hues of the fiber pigment changed in regular patterns. The hue circle for brown and green cotton changed in the opposite direction with wetting process treatment. In general, the treated cotton color and luster became dark and vivid, and this trend provided the possibility for enhancing the fiber quality by suitable environmental friendly finishing. The analysis showed that the color and luster of the cotton may be controlled by a series of pigments which show different chemical performance.
基金supported by the National Natural Science Foundation of China (31460360)the National Key Research and Development Program,China (2016YFD0101900)the Foundation Research Funds for Advanced Talents of Shihezi University,China (RCZX201316)
文摘To separate the proteins related to pigment synthesis in green colored fiber (GCF), we performed a comparative proteomic analysis to identify the differentially expressed proteins between green cotton fiber and a white near-isogenic line (NIL). One differential spot identified as phenylocumaran benzylic ether redutase-like protein (PCBER) was expressed only in GCF, but was not found in white colored fiber (WCF) at any time points. Since PCBER was a key enzyme in lignans biosynthesis, total lignans were extracted from GCF and WCF and their content was determined by using a chromotropic acid spectrophotometric method. The results showed that total lignans content in GCF was significantly higher than that in WCF. The qPCR analysis for two PLR genes associated with lignans biosynthesis showed that the expression level of two genes was much higher in GCF than that in WCF at 24 and 27 days post anthesis (DPA), which may be responsible for the higher lignans content in GCF. Our study suggested that PCBER and lignans may be responsible for the color difference between GCF and WCF. Additionally, p-dimethylaminocinnamaldehyde (DMACA) staining demonstrated that the pigment in GCF was not proanthocyanidins, and was different from that in brown colored fiber (BCF). This study provided new clues for uncovering the molecular mechanisms related to pigment biosynthesis in GCF.
文摘The red ceramic pigment is widely used in industrial production, but the pigments with pure color and bright red performance are rare. Therefore, it is important to study and develop new red ceramic pigment with perfect color performance. This paper reports the preparation of Cr-doped YAlO_3 red ceramic pigment rendering by sol-gel method with high temperature resistance, good color and proposed color mechanism. The prepared samples were characterized by XRD, SEM, EDS and UV-vis, and the effects of Cr on the crystal structure, color rendering properties and color mechanism were discussed. The results showed that the optimum concentration of coloring agent(Cr) in Cr:YAlO_3 red ceramic pigment was 3 at.%. The main color mechanism was also discussed. Compared with the solid phase sintering and precipitation methods for the synthesis of red ceramic pigment, the sol-gel method possessed obvious advantages, such as perfect mixing of the raw materials, uniform dispersion of doping ions and the pure color.
文摘The objective of this study was to evaluate the effects of feeding pigmented feed (50 ppm astaxanthin) to diploid or triploid Arctic charr, Salvelinus alpinus, on growth rate, color of fillets, and the variability of color within fillets. Arctic charr with an average weight of 419.9 g ± 83.3 g, including both diploid (n = 72) and triploid (n = 72) fish, were allotted to each treatment: 0, 3 or 6 months of pigmented feed before slaughter. Color assessment was made using a portable reflected light colorimeter in the CIE 1976 L* a* b* color system mode. Feeding a pigmented diet to Arctic charr delayed sexual maturity in male Arctic charr and to a certain extent in females, but also slightly reduced the rate of growth. With increasing time on the pigmented diet, color parameters of the flesh increased as well as the variability in color. Triploid fish had more intense color assessments for each dietary treatment than the diploid fish.
基金This work was supported by the National Natural Science Foundation of China (39670776 Qingjiong Zhang) and the Returnee Startup Foundation of National Educational Committee of China (Qingjiong Zhang)
文摘Purpose : To investigate correlation of variation in the exon 5 of red and green pigment genes with color vision defects.Methods : Exon 5 of the red and green pigment genes in 11 protans, 19 deutans and 38 normal controls were analyzed by heteroduplux-SSCP analysis.Results : In all 11 protans and 8 of the 19 deutans, defects of the red or green pigment gene could be identified. The C polymorphism (A/C at codon 283) in green pigment gene was present in 8 of 44 trichromats and 5 of 24 dichromats. Specific electrophoretic bands were found in 2 normal controls and a deutan.Conclusions: Variation in the exon 5 of the red and green pigment genes is the most common cause for color vision defects. Heteroduplex-SSCP analysis is a suitable way in screening specific variation in visual pigment genes. Eye Science 1998; 14 : 130 - 133.
文摘Preparation and photo-patterning characteristics of organic-inorganic hybrid thin film containing latent pigment by using photo-acid-generator (PAG) and microwave irradiation have been investigated. The acrylic thin film modified with methoxysilane containing PAG was formed on a glass substrate and irradiated with ultraviolet rays to promote sol-gel reaction by catalytic action of acid which was generated from PAG. And then the film was hardened with microwave irradiation, yielding organic-inorganic hybrid polymer film having hardness, highly transparency and strong adhesion with a glass substrate. Since this reaction only occurred in the optically (UV) irradiated regions, by exploiting the difference between the adhesivenesses of these regions photo-irradiated through photomask with a glass substrate, it was possible to form a patterned film with pitch of 100 to 50 μm by a simple lift-off method. A pigment-containing film using latent pigments (with subtractive three primary colors of coloring materials) and a patterned film were prepared, and it was possible to make these films multi-colored by varying the mixing ratio of the pigments. This multi-colored film-preparation method is effective for simply and efficiently forming a color-filter film by applying optical and microwave irradiation.
基金The Agricultural Seed Project of Shandong Province
文摘Sea cucumber, Apostichopus japonicus(Selenka), is a commercially important marine species in China. Among the differently colored varieties sold in China, white and purple sea cucumbers have the greatest appeal to consumers. Identification of the pigments that may contribute to the formation of different color morphs of sea cucumbers will provide a scientific basis for improving the cultivability of desirable color morphs. In this study,sea cucumbers were divided into four categories according to their body color: white, light green, dark green, and purple. The pigment composition and contents in the four groups were analyzed by high performance liquid chromatography(HPLC). The results show that the pigment contents differed significantly among the white, lightgreen, dark-green, and purple sea cucumbers, and there were fewer types of pigments in white sea cucumber than in the other color morphs. The only pigments detected in white sea cucumbers were guanine and pteroic acid.Guanine and pteroic acid are structural colors, and they were also detected in light-green, dark-green, and purple sea cucumbers. Every pigment detected, except for pteroic acid, was present at a higher concentration in purple morphs than in the other color morphs. The biological color pigments melanin, astaxanthin, β-carotene, and lutein were detected in light-green, dark-green, and purple sea cucumbers. While progesterone and lycopene,which are also biological color pigments, were not detected in any of the color morphs. Melanin was the major pigment contributing to body color, and its concentration increased with deepening color of the sea cucumber body. Transmission electron microscopy analyses revealed that white sea cucumbers had the fewest epidermal melanocytes in the body wall, and their melanocytes contained fewer melanosomes as well as non-pigmented pre-melanosomes. Sea cucumbers with deeper body colors contained more melanin granules. In the body wall of dark-green and purple sea cucumbers, melanin granules were secreted out of the cell. The results of this study provide evidence for the main factors responsible for differences in coloration among white, light-green, darkgreen, and purple sea cucumbers, and also provide the foundation for further research on the formation of body color in sea cucumber, A. japonicus.
基金supported by the China Na-tional Natural Science Fund Project(39370495)the University Research Program of Northwest Sci-Tech University of Agriculture&Forestry(No.2000-77)the Research Program of National Yangling Bio-Tech Breeding Center(No.2001-01).
文摘During 1998 - 1999, the course of the berry coloring and the development of the pigment cells from veraison to ripeness were studied by freeze sectioning 43 accessions of 12 Vitis species (including 10 Chinese wild species). External observation showed that the berries of most species began coloring on the fruit top surface or on the sun-lit surface, and the berry surface color was evenly distributed when the berry was ripe. Internal observation revealed that the pigment cells in a few layers between cuticle and sub-cuticle colored first, the cuticle colored from inner layers to outer layers while the sub-cuticle from outer to inner, and the cuticle cells began coloring a little earlier than the sub-cuticle ones in most species. The pigment cells developed unevenly during the berry ripening. In the beginning of berry coloring, the cell pigment density among the layers or among the cells in the same layer was different. Both the numbers of the pigmented cells and the cell pigment density increased during the berry coloring, while the former lasted a short time; however, the latter kept increasing from veraison to ripeness, and they reached the deepest color when the berry was ripe.
基金This work was supported by the National Natural Science Foundation of China under contract Nos 40476019,40576078 and 5210266the Knowledge Innovation Program of the Chinese Academy of Sciences under contract No.KZCX2-YW-215.
文摘Data from three cruises conducted in the Zhujiang River (ZR), coastal waters of Guangdong (CWGD) and the northern South China Sea (NSCS) during 2003 and 2004 were examined for assessing the relative importance of pigment composition and packaging effect in modifying the specific absorption coefficients of phytoplankton. The three survey regions differ widely in their phytoplankton community with large cells dominating the ZR and CWGD waters and small cells dominating the NSCS region. Variations in the size structure and the accessory pigments have much effect on the chlorophyll a-specific absorption coefficient of phytoplankton. The size index accounted for about 42% and 33% of the variation of the specific absorption coefficient at 440 and 675 nm, respectively. Using the multiple regression analysis approach, pigment concentrations for each sample were calculated. The accessory pigments other than chlorophyll a contribute to absorption mainly in the blue - to - green region of the spectrum and their absorptions account for about 44%, 43% and 53% on the average of the total phytoplankton absorption at 440 nm for the ZR, CWGD and NSCS regions. Among the accessory pigments, the photosynthetic carotenoids (noted PSC) play a dominant role in the ZR and CWGD waters, while in the NSCS the nonphotosynthetic carotenoids (noted PPG) as well as PSC have important contributions. Because the variations of both the size structure and accessory pigments in algal populations contributed to the variability of the specific absorption coefficient in the study regions, these factors may be considered explicitly in future bio - optical algorithms to derive chlorophyll a concentration more accurately.
文摘As sessile organisms, plants have to be subjected to insect attack. Over the long course of evolution, plants have produced many mechanisms to resist this biotic stress such as pigment accumulation. Pigment levels determined depth and distribution of leaf color, thereby indirectly or directly affecting the behavior of insect attack. Therefore, understanding the mechanism of mutual recognition between leaf color and insect will provide important theoretical insight for the cultivation and improvement of new cultivars. This paper outlines leaf-color formation and the effect of pigment on the behavior of insect attack, and explores the challenge of research in the interaction between leaf color and insect, as soon as the potential direction for future development. This will give a broad background for improvements of colored plants with resistance to insect attack.
文摘Beetles in the family Coccinellidae, commonly known as ladybugs, lady beetles, or ladybirds, are easily identifiable and popular beneficial insects. Current research aims to support conservation efforts of beneficial insects in agroecosystems by exploring genetic processes related to nutrition. As a part of this research, colonies of Coleomegilla maculata have been maintained in culture and inbred over many generations since 2009. One result of this inbreeding has been the discovery of novel morphological phenotypes unique to laboratory strains or present in wild populations at such low levels that they have not yet been described. One such phenotype is described here. The strain described here, ye (yellow elytra and eyes) was characterized with classical Mendelian breeding and digital image analysis. This phenotype differs from wild populations by possessing yellow pigment in the elytra and pale grey to white eyes. In contrast, wild populations of C. maculata possess pink or red pigmented elytra with black spots, and black eyes. C. maculata is not known to exhibit polymorphism in the field. Inheritance is autosomal and recessive. This species was not previously known to exhibit the dramatic variation of color described here. The strain is stable in the homozygous recessive form, and retains laboratory rearing characteristics similar to the wild type laboratory strain.
文摘In this research ceramic pigments have been synthesized with crystalline spinel structure and chromium based with a stoichiometry ACr2O4. A was an element with +2 valence metal, in this case, metals were zinc and iron, these pigments have been synthesized by non-conventional methods like the co-precipitation assisted by ultrasound and high milling energy. Pigments were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), spectrophotometry, and colorimetric CIELab method. Results showed that it was possible to obtain a crystallin desired structure at temperatures below 900°C by non-conventional methods. These results showed the advantages of ceramic pigments obtained by alternative routes, because it was possible to have a better control over stoichiometry and colorimetric structure properties. Furthermore, they were obtained at temperatures lower than those used by the traditional ceramic route.
基金This work is supported by the Foundation of the China National Natural Sciences (Grant No.59006487)the Special Foundationfor Doctoral Programof the Ministry of Education (Grant No.97035821)
文摘Chlorophylls and carotenoids are the main pigments in leaves of higher plants. They combine to give color to leaves. Based on the CIE1931 chromaticity coordinates of chlorophylls and cartotenoids, which were obtained from their classical absorption spectra and the law of additive color mixing, the theoretical color gamut of higher plant leaves is determined. The theoretical prediction agrees well with our experimental results.