A method based on HSI color space is presented to solve the problem of circle detection from color images. In terms of the evaluation to the edge detection method based on intensity, the edge detection based on hue is...A method based on HSI color space is presented to solve the problem of circle detection from color images. In terms of the evaluation to the edge detection method based on intensity, the edge detection based on hue is chosen to process the color image, and the simplified calculation of hue transform is discussed. Then the algorithm of circle detection based on Canny edge detection is proposed. Due to the dispersive distribution of the detected result, Hough transformation and template smooth are used in circle detection, and the proposed method gives a quite good result.展开更多
To decrease number of samples for the implementation of color space transformation, a method for modeling the chromatic characterization of video cameras was proposed. An additional transformation was required to pred...To decrease number of samples for the implementation of color space transformation, a method for modeling the chromatic characterization of video cameras was proposed. An additional transformation was required to predict output RGB values for an input color. This additional transformation was based on spectral reflectance relationship. The transformed color coordinates were taken as inputs of a multilayer neural network. Based on network outputs, the RGB values to be predicted were calculated. Experimental results were given to illustrate the performance of the method. Even though much less number of training samples are used, this method can also perform well on this color space transformation.展开更多
To transfer the color data from a device (video camera) dependent color space into a device? independent color space, a multilayer feedforward network with the error backpropagation (BP) learning rule, was regarded ...To transfer the color data from a device (video camera) dependent color space into a device? independent color space, a multilayer feedforward network with the error backpropagation (BP) learning rule, was regarded as a nonlinear transformer realizing the mapping from the RGB color space to CIELAB color space. A variety of mapping accuracy were obtained with different network structures. BP neural networks can provide a satisfactory mapping accuracy in the field of color space transformation for video cameras.展开更多
A method for shadow detection and compensation for color aerial images is presented. It is considered that the intensity value of each image pixel is the product of illumination function and ground object reflection, ...A method for shadow detection and compensation for color aerial images is presented. It is considered that the intensity value of each image pixel is the product of illumination function and ground object reflection, and the shadowed regions on the image are mainly caused by the short of illumination, so the information compensation for the shadowed regions should concentrate on the illumination adjustment of concerned area on the basis of the analysis of whole image. The shadow detection and compensation procedure proposed by this paper consists of four steps.展开更多
为了解决红外制导研究中舰船图像样本数量不足的问题,提出一种面向舰船图像的改进的生成对抗网络(generative adversarial network,GAN),能够生成高质量的红外图像。首先转换可见光图像颜色空间以更好地捕捉夜间低亮度下图像的轮廓信息...为了解决红外制导研究中舰船图像样本数量不足的问题,提出一种面向舰船图像的改进的生成对抗网络(generative adversarial network,GAN),能够生成高质量的红外图像。首先转换可见光图像颜色空间以更好地捕捉夜间低亮度下图像的轮廓信息,然后引入残差块生成网络降低低像素的可见光图像对生成的红外图像的影响并加深网络层数以更好地学习深层映射关系,最后引入更平滑的损失函数加快收敛速度,提高生成红外图像目标边缘清晰程度。在制作的无人机拍摄的红外可见光配对的数据集进行测试,改进后的方法平均生成图像峰值信噪比(peak signal to noiseratio,PSNR)提升20.3%,结构相似性度量(structural similarity,SSIM)提升30.4%。结果表明改进的网络可以生成质量更高的红外仿真图像,用于目标检测等任务有更好的效果。展开更多
Searching interested images based on visual properties of images is a challenging problem and it has received considerable attention from researchers in the fields like image processing, computer vision and multimedia...Searching interested images based on visual properties of images is a challenging problem and it has received considerable attention from researchers in the fields like image processing, computer vision and multimedia systems in the last 20 years. While the importance and the effect of the image features like color, texture and shape have been taken into account in many papers, there have not been many studies on the importance of the color spaces on the performance of Content Based Image Retrieval (CBIR) systems. In this paper we first experimentally study the effect of choosing color space on the performance of content based image retrieval using Wavelet decomposition of each color channel. To this end, the retrieval results of different color spaces like RGB, YUV, HSV, YCbCr and Lab are analyzed. Then as a result a new Content Based Retrieval model using Wavelet Transform in Lab color space and Color Moments is proposed. In order to increase the efficiency of the proposed model some division schemes are taken into account which improves the performance of the proposed model. The proposed model tackles one of the important restrictions in content based image retrieval, namely, the challenge between the accuracy of retrieval and its time complexity. The experimental results on two databases [19] [24] demonstrate the superiority of the proposed model compared to existing models.展开更多
文摘A method based on HSI color space is presented to solve the problem of circle detection from color images. In terms of the evaluation to the edge detection method based on intensity, the edge detection based on hue is chosen to process the color image, and the simplified calculation of hue transform is discussed. Then the algorithm of circle detection based on Canny edge detection is proposed. Due to the dispersive distribution of the detected result, Hough transformation and template smooth are used in circle detection, and the proposed method gives a quite good result.
文摘To decrease number of samples for the implementation of color space transformation, a method for modeling the chromatic characterization of video cameras was proposed. An additional transformation was required to predict output RGB values for an input color. This additional transformation was based on spectral reflectance relationship. The transformed color coordinates were taken as inputs of a multilayer neural network. Based on network outputs, the RGB values to be predicted were calculated. Experimental results were given to illustrate the performance of the method. Even though much less number of training samples are used, this method can also perform well on this color space transformation.
文摘To transfer the color data from a device (video camera) dependent color space into a device? independent color space, a multilayer feedforward network with the error backpropagation (BP) learning rule, was regarded as a nonlinear transformer realizing the mapping from the RGB color space to CIELAB color space. A variety of mapping accuracy were obtained with different network structures. BP neural networks can provide a satisfactory mapping accuracy in the field of color space transformation for video cameras.
文摘A method for shadow detection and compensation for color aerial images is presented. It is considered that the intensity value of each image pixel is the product of illumination function and ground object reflection, and the shadowed regions on the image are mainly caused by the short of illumination, so the information compensation for the shadowed regions should concentrate on the illumination adjustment of concerned area on the basis of the analysis of whole image. The shadow detection and compensation procedure proposed by this paper consists of four steps.
文摘为了解决红外制导研究中舰船图像样本数量不足的问题,提出一种面向舰船图像的改进的生成对抗网络(generative adversarial network,GAN),能够生成高质量的红外图像。首先转换可见光图像颜色空间以更好地捕捉夜间低亮度下图像的轮廓信息,然后引入残差块生成网络降低低像素的可见光图像对生成的红外图像的影响并加深网络层数以更好地学习深层映射关系,最后引入更平滑的损失函数加快收敛速度,提高生成红外图像目标边缘清晰程度。在制作的无人机拍摄的红外可见光配对的数据集进行测试,改进后的方法平均生成图像峰值信噪比(peak signal to noiseratio,PSNR)提升20.3%,结构相似性度量(structural similarity,SSIM)提升30.4%。结果表明改进的网络可以生成质量更高的红外仿真图像,用于目标检测等任务有更好的效果。
文摘Searching interested images based on visual properties of images is a challenging problem and it has received considerable attention from researchers in the fields like image processing, computer vision and multimedia systems in the last 20 years. While the importance and the effect of the image features like color, texture and shape have been taken into account in many papers, there have not been many studies on the importance of the color spaces on the performance of Content Based Image Retrieval (CBIR) systems. In this paper we first experimentally study the effect of choosing color space on the performance of content based image retrieval using Wavelet decomposition of each color channel. To this end, the retrieval results of different color spaces like RGB, YUV, HSV, YCbCr and Lab are analyzed. Then as a result a new Content Based Retrieval model using Wavelet Transform in Lab color space and Color Moments is proposed. In order to increase the efficiency of the proposed model some division schemes are taken into account which improves the performance of the proposed model. The proposed model tackles one of the important restrictions in content based image retrieval, namely, the challenge between the accuracy of retrieval and its time complexity. The experimental results on two databases [19] [24] demonstrate the superiority of the proposed model compared to existing models.