Based on the characteristics that human eyes are sensitive to brightness and color, the lightness information of visible image and degree of linear polarization and polarization angle were fused in hue-saturation- va...Based on the characteristics that human eyes are sensitive to brightness and color, the lightness information of visible image and degree of linear polarization and polarization angle were fused in hue-saturation- value(HSV) space. To meet the observation of human eyes, hue adjustment based on color transfer was carried out to the fused image and hue was adjusted by polynomial fitting method. Hue adjustment method was improved considering the complicated real mapping relationship between hue gray scale of fused image and reference template image. The result shows that the color fusion method presented in this paper is superior to the traditional pseudo-color method and it is helpful to recognize the target from the environment correctly. The fusion result can reflect the difference of object's polarization characteristic, and get a natural fused image effect.展开更多
Color transfer between images uses the statistics information of image effectively. We present a novel approach of local color transfer between images based on the simple statistics and locally linear embedding. A ske...Color transfer between images uses the statistics information of image effectively. We present a novel approach of local color transfer between images based on the simple statistics and locally linear embedding. A sketching interface is proposed for quickly and easily specifying the color correspondences between target and source image. The user can specify the corre- spondences of local region using scribes, which more accurately transfers the target color to the source image while smoothly preserving the boundaries, and exhibits more natural output results. Our algorithm is not restricted to one-to-one image color transfer and can make use of more than one target images to transfer the color in different regions in the source image. Moreover, our algorithm does not require to choose the same color style and image size between source and target images. We propose the sub-sampling to reduce the computational load. Comparing with other approaches, our algorithm is much better in color blending in the input data. Our approach preserves the other color details in the source image. Various experimental results show that our approach specifies the correspondences of local color region in source and target images. And it expresses the intention of users and generates more actual and natural results of visual effect.展开更多
The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acqu...The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acquired images. Currently available image defogging methods are mostly suitable for environments with natural light in the daytime, but the clarity of images captured under complex lighting conditions and spatial changes in the presence of fog at night is not satisfactory. This study proposes an algorithm to remove night fog from single images based on an analysis of the statistical characteristics of images in scenes involving night fog. Color channel transfer is designed to compensate for the high attenuation channel of foggy images acquired at night. The distribution of transmittance is estimated by the deep convolutional network DehazeNet, and the spatial variation of atmospheric light is estimated in a point-by-point manner according to the maximum reflection prior to recover the clear image. The results of experiments show that the proposed method can compensate for the high attenuation channel of foggy images at night, remove the effect of glow from a multi-color and non-uniform ambient source of light, and improve the adaptability and visual effect of the removal of night fog from images compared with the conventional method.展开更多
The color-tunable white organic light-emitting diode (CT-WOLED) with wide correlation color temperature (CCT) has many advantages in optimizing the artificial light source to adapt to the human physiological cycle. Th...The color-tunable white organic light-emitting diode (CT-WOLED) with wide correlation color temperature (CCT) has many advantages in optimizing the artificial light source to adapt to the human physiological cycle. The research on the change trend of CCT and the law of extending the change range of CCT will help to further improve the performance of this kind of device. The present work fabricated a series of CT-WOLED devices with a simple structure, which are all composed of two ultra-thin phosphor layers (PO-01 and Flrpic) and a spacer interlayer. The yellow interface exciplex (TCTA/PO-T2T) formed between the spacer layer (PO-T2T) and transmission material (TCTA) in EML will decrease the CCT value at low voltage. The relationship between the energy transfer in EML and CCT change trend is investigated by adjusting the interface exciplexes and the thickness of the interlayer or the phosphor layer in devices A, B and C, respectively. The results demonstrate that a simple OLED device with an interlayer inserted between two ultra-thin phosphor layers can achieve a wider CCT span from 3359 K to 6451 K at voltage increases from 2.75 V to 8.25 V. .展开更多
In this paper,molecular dynamics simulation was applied to synthesize a layered structural color from Konjac glucomannan(KGM) and the effect of particle diameter and temperature were investigated. A series of method...In this paper,molecular dynamics simulation was applied to synthesize a layered structural color from Konjac glucomannan(KGM) and the effect of particle diameter and temperature were investigated. A series of methods such as high voltage electric field treatment,the transfer matrix method and the CIE standard colorimetric system were simulated to obtain the chromaticity coordinates and to analyze the color changes of KGM particles. The results revealed that as the particle diameter increases,the structural color of KGM particles deflects towards the yellow wavelength within the visible spectrum; and as the reaction temperature rises,the structural color deflects towards the blue and violet wavelengths within the visible spectrum.展开更多
Objective To evaluate endometrial and subendometrial blood flows measured by vaginal color Doppler ultrasound as a predicator of endometrial receptivity in women undergoing IVF treatment. Methods A total of 119 infert...Objective To evaluate endometrial and subendometrial blood flows measured by vaginal color Doppler ultrasound as a predicator of endometrial receptivity in women undergoing IVF treatment. Methods A total of 119 infertile patients undergoing the first IVF/ICSI-ET cycle were recruited. Three groups were divided according to a color Doppler ultrasound examination performed on the day of hCG injection. Group A, endometrial and subendometrial blood flows were 2 branches and below; group B, endometrial and subendometrial blood flows were between 3 and 4 branches; group C, endometrial and subendometrial blood flows were 5 branches and above. Patients were transferred 1-3 embryos each. Demographic data, ovarian responses, endometrial thickness, PI, RI, development of embryo and IVF result among groups were compared. Results Demographic data, ovarian responses, endometrial thickness, PI, RI and development of embryo among groups have no significant difference. The pregnancy rate of group A was significantly lower than that of group B (P〈0.05) and group C (P〈0.01). The implantation rate of group A was significantly lower than than of group C (P〈0.01). There was no significant difference of the rate of pregnancy and implantation between group B and group C (P〉0.05). Conclusion Endometrial and subendometrial blood flows measured by vaginal color Doppler ultrasound is a good predicator of pregnancy during IVF treatment. A good endometrial and subendometrial blood flows is benefit for the result of IVF.展开更多
基金Sponsored by the National High Technology Research and Development Program of China ("863"Program) (2006AA09Z207)
文摘Based on the characteristics that human eyes are sensitive to brightness and color, the lightness information of visible image and degree of linear polarization and polarization angle were fused in hue-saturation- value(HSV) space. To meet the observation of human eyes, hue adjustment based on color transfer was carried out to the fused image and hue was adjusted by polynomial fitting method. Hue adjustment method was improved considering the complicated real mapping relationship between hue gray scale of fused image and reference template image. The result shows that the color fusion method presented in this paper is superior to the traditional pseudo-color method and it is helpful to recognize the target from the environment correctly. The fusion result can reflect the difference of object's polarization characteristic, and get a natural fused image effect.
基金supported by the National Natural Science Foundation of China(61672482,11626253)the One Hundred Talent Project of the Chinese Academy of Sciences
文摘Color transfer between images uses the statistics information of image effectively. We present a novel approach of local color transfer between images based on the simple statistics and locally linear embedding. A sketching interface is proposed for quickly and easily specifying the color correspondences between target and source image. The user can specify the corre- spondences of local region using scribes, which more accurately transfers the target color to the source image while smoothly preserving the boundaries, and exhibits more natural output results. Our algorithm is not restricted to one-to-one image color transfer and can make use of more than one target images to transfer the color in different regions in the source image. Moreover, our algorithm does not require to choose the same color style and image size between source and target images. We propose the sub-sampling to reduce the computational load. Comparing with other approaches, our algorithm is much better in color blending in the input data. Our approach preserves the other color details in the source image. Various experimental results show that our approach specifies the correspondences of local color region in source and target images. And it expresses the intention of users and generates more actual and natural results of visual effect.
基金supported by a grant from the Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology (Grant No. GZZKFJJ2020004)the National Natural Science Foundation of China (Grant Nos. 61875013 and 61827814)the Natural Science Foundation of Beijing Municipality (Grant No. Z190018)。
文摘The visible-light imaging system used in military equipment is often subjected to severe weather conditions, such as fog, haze, and smoke, under complex lighting conditions at night that significantly degrade the acquired images. Currently available image defogging methods are mostly suitable for environments with natural light in the daytime, but the clarity of images captured under complex lighting conditions and spatial changes in the presence of fog at night is not satisfactory. This study proposes an algorithm to remove night fog from single images based on an analysis of the statistical characteristics of images in scenes involving night fog. Color channel transfer is designed to compensate for the high attenuation channel of foggy images acquired at night. The distribution of transmittance is estimated by the deep convolutional network DehazeNet, and the spatial variation of atmospheric light is estimated in a point-by-point manner according to the maximum reflection prior to recover the clear image. The results of experiments show that the proposed method can compensate for the high attenuation channel of foggy images at night, remove the effect of glow from a multi-color and non-uniform ambient source of light, and improve the adaptability and visual effect of the removal of night fog from images compared with the conventional method.
文摘The color-tunable white organic light-emitting diode (CT-WOLED) with wide correlation color temperature (CCT) has many advantages in optimizing the artificial light source to adapt to the human physiological cycle. The research on the change trend of CCT and the law of extending the change range of CCT will help to further improve the performance of this kind of device. The present work fabricated a series of CT-WOLED devices with a simple structure, which are all composed of two ultra-thin phosphor layers (PO-01 and Flrpic) and a spacer interlayer. The yellow interface exciplex (TCTA/PO-T2T) formed between the spacer layer (PO-T2T) and transmission material (TCTA) in EML will decrease the CCT value at low voltage. The relationship between the energy transfer in EML and CCT change trend is investigated by adjusting the interface exciplexes and the thickness of the interlayer or the phosphor layer in devices A, B and C, respectively. The results demonstrate that a simple OLED device with an interlayer inserted between two ultra-thin phosphor layers can achieve a wider CCT span from 3359 K to 6451 K at voltage increases from 2.75 V to 8.25 V. .
基金supported by the National Natural Science Foundation of China(31271837 and 31471704)the major project of Fujian Industry-Academy-Research Cooperation(2013N5003)+1 种基金the Natural Science Foundation(2011J0101)of Fujian Province,the Science and Technology Program under Fujian Provincial Department of Education(JA13439 and JA13440)the Science and Technology Program under Fujian Provincial Department of Forestry(20135)
文摘In this paper,molecular dynamics simulation was applied to synthesize a layered structural color from Konjac glucomannan(KGM) and the effect of particle diameter and temperature were investigated. A series of methods such as high voltage electric field treatment,the transfer matrix method and the CIE standard colorimetric system were simulated to obtain the chromaticity coordinates and to analyze the color changes of KGM particles. The results revealed that as the particle diameter increases,the structural color of KGM particles deflects towards the yellow wavelength within the visible spectrum; and as the reaction temperature rises,the structural color deflects towards the blue and violet wavelengths within the visible spectrum.
文摘Objective To evaluate endometrial and subendometrial blood flows measured by vaginal color Doppler ultrasound as a predicator of endometrial receptivity in women undergoing IVF treatment. Methods A total of 119 infertile patients undergoing the first IVF/ICSI-ET cycle were recruited. Three groups were divided according to a color Doppler ultrasound examination performed on the day of hCG injection. Group A, endometrial and subendometrial blood flows were 2 branches and below; group B, endometrial and subendometrial blood flows were between 3 and 4 branches; group C, endometrial and subendometrial blood flows were 5 branches and above. Patients were transferred 1-3 embryos each. Demographic data, ovarian responses, endometrial thickness, PI, RI, development of embryo and IVF result among groups were compared. Results Demographic data, ovarian responses, endometrial thickness, PI, RI and development of embryo among groups have no significant difference. The pregnancy rate of group A was significantly lower than that of group B (P〈0.05) and group C (P〈0.01). The implantation rate of group A was significantly lower than than of group C (P〈0.01). There was no significant difference of the rate of pregnancy and implantation between group B and group C (P〉0.05). Conclusion Endometrial and subendometrial blood flows measured by vaginal color Doppler ultrasound is a good predicator of pregnancy during IVF treatment. A good endometrial and subendometrial blood flows is benefit for the result of IVF.