This paper discusses current research and development of fringe projection-based techniques. A system based on Fourier transform profilometry (FTP) is proposed for three-dimensional (3D) shape recovery. The system imp...This paper discusses current research and development of fringe projection-based techniques. A system based on Fourier transform profilometry (FTP) is proposed for three-dimensional (3D) shape recovery. The system improves the method of phase unwrapping to gain accurate 3D shapes of objects. The method uses a region-growing algorithm for the path prediction guided by the quality map to increase the recovering accuracy and provides a fast and simple tool for 3D shape recovery. The shape measurement and data recovery are integrated to offer a new method of 3D modelling. Examples are presented to verify the feasibility of the proposed method.展开更多
Single-shot high-speed 3D imaging is important for reconstructions of dynamic objects.For fringe projection profilometry(FPP),however,it is still challenging to recover accurate 3D shapes of isolated objects by a sing...Single-shot high-speed 3D imaging is important for reconstructions of dynamic objects.For fringe projection profilometry(FPP),however,it is still challenging to recover accurate 3D shapes of isolated objects by a single fringe image.In this paper,we demonstrate that the deep neural networks can be trained to directly recover the absolute phase from a unique fringe image that involves spatially multiplexed fringe patterns of different frequencies.The extracted phase is free from spectrum-aliasing problem which is hard to avoid for traditional spatial-multiplexing methods.Experiments on both static and dynamic scenes show that the proposed approach is robust to object motion and can obtain high-quality 3D reconstructions of isolated objects within a single fringe image.展开更多
Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this...Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.展开更多
Acquisition of physical data with high precision is a key step in reverse engineering (RE). It is an important stimulative for the progress of reverse engineering with which various digitizing devices are invent ed,...Acquisition of physical data with high precision is a key step in reverse engineering (RE). It is an important stimulative for the progress of reverse engineering with which various digitizing devices are invent ed, developed and made applicable. This paper introduces a three dimensional opt ical measurement method based on digital fringe projection technique in RE to im prove the technique through its application. A practical example is presented an d the result demonstrates the applicability and feasibility of the measurement s ystem as well as the reliability and validity of relevant methods and algorithms .展开更多
We describe a 2D fringe projection method that involves projecting two groups of sharp comb fringes onto a free-flying hawk-moth from different directions and recording the images of distorted fringes by two high spee...We describe a 2D fringe projection method that involves projecting two groups of sharp comb fringes onto a free-flying hawk-moth from different directions and recording the images of distorted fringes by two high speed cameras from two orthogonal views. By calculating the 3D coordinates of the points on the hawk-moth and three-dimensional reconstruction of the wing, the flight trajectory, body attitude and wing kinematics including flapping angle, elevation angle, torsion angle, and camber deformation are obtained.展开更多
Fringe projection technique is a non-contact, full field 3-D shape measurement method. The object depth information is recorded in one or several deformed fringe patterns. The phase-shifting algorithm or the Fourier t...Fringe projection technique is a non-contact, full field 3-D shape measurement method. The object depth information is recorded in one or several deformed fringe patterns. The phase-shifting algorithm or the Fourier transform method can be used to extract the wrapped phase data. A phase unwrapping process is then applied to retrieve a continuous phase distribution, which represents the surface profile of the test object. In this paper, a quality-guided phase unwrapping approach is incorporated and two novel phase quality evaluation methods are proposed to facilitate the phase unwrapping process.展开更多
In this paper, the optical/digital fringe multiplication (O/DFM) is realized in projection moiré using digital image processing (DIP). Both deformed grating and reference grating are captured using a CCD camera. ...In this paper, the optical/digital fringe multiplication (O/DFM) is realized in projection moiré using digital image processing (DIP). Both deformed grating and reference grating are captured using a CCD camera. The reference grating can also be produced using DIP. With the O/DFM, the pattern is multiplied with an image processing software, which is developed using MATLAB 6.5. Also with DIP, the phase shifting can become much simpler, and the automation can be adopted. The multiplied pattern is much thinner and easier to read, and sensitivity of measurement can be enhanced.展开更多
To measure breast basic dimension by using computer-aided projection fringe system.Methods A system has been developed for measuring breast basic dimension based on computer-aided projection fringe measurement and pro...To measure breast basic dimension by using computer-aided projection fringe system.Methods A system has been developed for measuring breast basic dimension based on computer-aided projection fringe measurement and programming software.Plastic manikins breast’s SN-N (sternal notch to nipple distance),N-ML (nipple to midline distance),N-N (internipple distance),MBW (base width of breast) and N-IMF (nipple to inframammary fold distance) are measured with this system.At the same time,these items are also measured with routine ruler.Results This study indicate that the system has some merits:① non-touching measurement;② it is very rapid,the patient measured need hold his breath only 0.5 second,and all the time it takes is about 2.5 minutes;③ the measurement’s sensitivity is as high as to 0.6 mm,which meets the clinic requirement entirely;④ the measurement’s accuracy of the system is not significantly when comparing to the routine ruler’s.Conclusion Computer-adided projection fringe system for measuring breast basic dimension is feasible and advanced.14 refs,1 fig.展开更多
In 2019,the Event Horizon Telescope(EHT)released the first-ever image of a black hole event horizon.Astronomers are now aiming for higher angular resolutions of distant targets,like black holes,to understand more abou...In 2019,the Event Horizon Telescope(EHT)released the first-ever image of a black hole event horizon.Astronomers are now aiming for higher angular resolutions of distant targets,like black holes,to understand more about the fundamental laws of gravity that govern our universe.To achieve this higher resolution and increased sensitivity,larger radio telescopes are needed to operate at higher frequencies and in larger quantities.Projects like the next-generation Very Large Array(ngVLA)and the Square-Kilometer Array(SKA)require building hundreds of telescopes with diameters greater than 10 ms over the next decade.This has a twofold effect.Radio telescope surfaces need to be more accurate to operate at higher frequencies,and the logistics involved in maintaining a radio telescope need to be simplified to support them properly in large quantities.Both of these problems can be solved with improved methods for surface metrology that are faster and more accurate with a higher resolution.This leads to faster and more accurate panel alignment and,therefore,a more productive observatory.In this paper,we present the use of binocular fringe projection profilometry as a solution to this problem and demonstrate it by aligning two panels on a 3-m radio telescope dish.The measurement takes only 10 min and directly delivers feedback on the tip,tilt,and piston of each panel to create the ideal reflector shape.展开更多
Coded structured light is an accurate, fast 3D measurement approach with high sampling density, of which the encoded fringes are distorted when projected to curved surface. Focused on the demand of encoding, decoding,...Coded structured light is an accurate, fast 3D measurement approach with high sampling density, of which the encoded fringes are distorted when projected to curved surface. Focused on the demand of encoding, decoding, multiview registration and system calibration, we expect to obtain undistorted fringes from camera image. Therefore, in this paper, we analyze the accuracy and sampling density of projecting distortion calibration approach based on control point and fitting surface. Moreover, combining the characteristic of coded structured light system, we design encoded fringe projecting distortion calibration scheme based on simplified encoded structured light model. Primarily, we neglect the minor parameters that affect the calibration in structured light model to reduce complexity. Then, we build the correspondence between camera image points and projector image points and achieve the calibration. Finally, we design evaluation scheme of projecting distortion calibration with parallelism and equal interval, and verify the effectiveness and accuracy of the approach through visual effect and experimental data.展开更多
Phase unwrapping is one of the key roles in fringe projection three-dimensional(3D)measurement technology.We propose a new method to achieve phase unwrapping in camera array light filed fringe projection 3D measuremen...Phase unwrapping is one of the key roles in fringe projection three-dimensional(3D)measurement technology.We propose a new method to achieve phase unwrapping in camera array light filed fringe projection 3D measurement based on deep learning.A multi-stream convolutional neural network(CNN)is proposed to learn the mapping relationship between camera array light filed wrapped phases and fringe orders of the expected central view,and is used to predict the fringe order to achieve the phase unwrapping.Experiments are performed on the light field fringe projection data generated by the simulated camera array fringe projection measurement system in Blender and by the experimental 3×3 camera array light field fringe projection system.The performance of the proposed network with light field wrapped phases using multiple directions as network input data is studied,and the advantages of phase unwrapping based on deep learning in light filed fringe projection are demonstrated.展开更多
基金Project (No. 59965003) supported by the National Natural ScienceFoundation of China
文摘This paper discusses current research and development of fringe projection-based techniques. A system based on Fourier transform profilometry (FTP) is proposed for three-dimensional (3D) shape recovery. The system improves the method of phase unwrapping to gain accurate 3D shapes of objects. The method uses a region-growing algorithm for the path prediction guided by the quality map to increase the recovering accuracy and provides a fast and simple tool for 3D shape recovery. The shape measurement and data recovery are integrated to offer a new method of 3D modelling. Examples are presented to verify the feasibility of the proposed method.
基金This work was supported by National Natural Science Foundation of China(62075096,62005121,U21B2033)Leading Technology of Jiangsu Basic Research Plan(BK20192003)+4 种基金“333 Engineering”Research Project of Jiangsu Province(BRA2016407)Jiangsu Provincial“One belt and one road”innovation cooperation project(BZ2020007)Fundamental Research Funds for the Central Universities(30921011208,30919011222,30920032101)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_0273)Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging&Intelligent Sense(JSGP202105).
文摘Single-shot high-speed 3D imaging is important for reconstructions of dynamic objects.For fringe projection profilometry(FPP),however,it is still challenging to recover accurate 3D shapes of isolated objects by a single fringe image.In this paper,we demonstrate that the deep neural networks can be trained to directly recover the absolute phase from a unique fringe image that involves spatially multiplexed fringe patterns of different frequencies.The extracted phase is free from spectrum-aliasing problem which is hard to avoid for traditional spatial-multiplexing methods.Experiments on both static and dynamic scenes show that the proposed approach is robust to object motion and can obtain high-quality 3D reconstructions of isolated objects within a single fringe image.
基金the financial support provided by the National Natural Science Foundation of China(11472267 and 11372182)the National Basic Research Program of China(2012CB937504)
文摘Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.
基金Project supported by the Science Foundation of Shanghai Munici pal Commission of Science and Technology ( Grant No.011461059)
文摘Acquisition of physical data with high precision is a key step in reverse engineering (RE). It is an important stimulative for the progress of reverse engineering with which various digitizing devices are invent ed, developed and made applicable. This paper introduces a three dimensional opt ical measurement method based on digital fringe projection technique in RE to im prove the technique through its application. A practical example is presented an d the result demonstrates the applicability and feasibility of the measurement s ystem as well as the reliability and validity of relevant methods and algorithms .
基金supported by the National Natural Science Foundation of China(10732030)
文摘We describe a 2D fringe projection method that involves projecting two groups of sharp comb fringes onto a free-flying hawk-moth from different directions and recording the images of distorted fringes by two high speed cameras from two orthogonal views. By calculating the 3D coordinates of the points on the hawk-moth and three-dimensional reconstruction of the wing, the flight trajectory, body attitude and wing kinematics including flapping angle, elevation angle, torsion angle, and camber deformation are obtained.
文摘Fringe projection technique is a non-contact, full field 3-D shape measurement method. The object depth information is recorded in one or several deformed fringe patterns. The phase-shifting algorithm or the Fourier transform method can be used to extract the wrapped phase data. A phase unwrapping process is then applied to retrieve a continuous phase distribution, which represents the surface profile of the test object. In this paper, a quality-guided phase unwrapping approach is incorporated and two novel phase quality evaluation methods are proposed to facilitate the phase unwrapping process.
文摘In this paper, the optical/digital fringe multiplication (O/DFM) is realized in projection moiré using digital image processing (DIP). Both deformed grating and reference grating are captured using a CCD camera. The reference grating can also be produced using DIP. With the O/DFM, the pattern is multiplied with an image processing software, which is developed using MATLAB 6.5. Also with DIP, the phase shifting can become much simpler, and the automation can be adopted. The multiplied pattern is much thinner and easier to read, and sensitivity of measurement can be enhanced.
文摘To measure breast basic dimension by using computer-aided projection fringe system.Methods A system has been developed for measuring breast basic dimension based on computer-aided projection fringe measurement and programming software.Plastic manikins breast’s SN-N (sternal notch to nipple distance),N-ML (nipple to midline distance),N-N (internipple distance),MBW (base width of breast) and N-IMF (nipple to inframammary fold distance) are measured with this system.At the same time,these items are also measured with routine ruler.Results This study indicate that the system has some merits:① non-touching measurement;② it is very rapid,the patient measured need hold his breath only 0.5 second,and all the time it takes is about 2.5 minutes;③ the measurement’s sensitivity is as high as to 0.6 mm,which meets the clinic requirement entirely;④ the measurement’s accuracy of the system is not significantly when comparing to the routine ruler’s.Conclusion Computer-adided projection fringe system for measuring breast basic dimension is feasible and advanced.14 refs,1 fig.
基金funded by the National Science Foundation(NSF)Award 2009384.
文摘In 2019,the Event Horizon Telescope(EHT)released the first-ever image of a black hole event horizon.Astronomers are now aiming for higher angular resolutions of distant targets,like black holes,to understand more about the fundamental laws of gravity that govern our universe.To achieve this higher resolution and increased sensitivity,larger radio telescopes are needed to operate at higher frequencies and in larger quantities.Projects like the next-generation Very Large Array(ngVLA)and the Square-Kilometer Array(SKA)require building hundreds of telescopes with diameters greater than 10 ms over the next decade.This has a twofold effect.Radio telescope surfaces need to be more accurate to operate at higher frequencies,and the logistics involved in maintaining a radio telescope need to be simplified to support them properly in large quantities.Both of these problems can be solved with improved methods for surface metrology that are faster and more accurate with a higher resolution.This leads to faster and more accurate panel alignment and,therefore,a more productive observatory.In this paper,we present the use of binocular fringe projection profilometry as a solution to this problem and demonstrate it by aligning two panels on a 3-m radio telescope dish.The measurement takes only 10 min and directly delivers feedback on the tip,tilt,and piston of each panel to create the ideal reflector shape.
基金The support of National Science Foundation of China (61571168,61401126), Leading Talent Team Backup Leader Foundation of Heilongjiang Province are gratefully acknowledged.
文摘Coded structured light is an accurate, fast 3D measurement approach with high sampling density, of which the encoded fringes are distorted when projected to curved surface. Focused on the demand of encoding, decoding, multiview registration and system calibration, we expect to obtain undistorted fringes from camera image. Therefore, in this paper, we analyze the accuracy and sampling density of projecting distortion calibration approach based on control point and fitting surface. Moreover, combining the characteristic of coded structured light system, we design encoded fringe projecting distortion calibration scheme based on simplified encoded structured light model. Primarily, we neglect the minor parameters that affect the calibration in structured light model to reduce complexity. Then, we build the correspondence between camera image points and projector image points and achieve the calibration. Finally, we design evaluation scheme of projecting distortion calibration with parallelism and equal interval, and verify the effectiveness and accuracy of the approach through visual effect and experimental data.
基金the National Natural Science Foundation of China(No.61905178)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(No.2019KJ021)the Natural Science Foundation of Tianjin(No.18JCQNJC71100)。
文摘Phase unwrapping is one of the key roles in fringe projection three-dimensional(3D)measurement technology.We propose a new method to achieve phase unwrapping in camera array light filed fringe projection 3D measurement based on deep learning.A multi-stream convolutional neural network(CNN)is proposed to learn the mapping relationship between camera array light filed wrapped phases and fringe orders of the expected central view,and is used to predict the fringe order to achieve the phase unwrapping.Experiments are performed on the light field fringe projection data generated by the simulated camera array fringe projection measurement system in Blender and by the experimental 3×3 camera array light field fringe projection system.The performance of the proposed network with light field wrapped phases using multiple directions as network input data is studied,and the advantages of phase unwrapping based on deep learning in light filed fringe projection are demonstrated.