The new mode of operation for slop cut withdrawal in batch distillation, i.e., draining Column liquid holdup at the end of slop cut period, was proposed. And the stopping criterion for the operation was investigated, ...The new mode of operation for slop cut withdrawal in batch distillation, i.e., draining Column liquid holdup at the end of slop cut period, was proposed. And the stopping criterion for the operation was investigated, Experiments were carded out with isopropanol-n-propanol binary system and isopropanol-n-propanol-n-butanol ternary system in a distillation column with a liquid collector installed between the reboiler and the column section, Experimental results in a Ф 45mm batch column show that the proposed policy can overcome the flywheel effect caused by column liquid holdup and thus cut down operation time and energy consumption 31%-61%.展开更多
The shortcomings of the present two formulae for describing column holdup are analyzed and deductions are made to find a new formula. The column holdup, Hw, described by the new formula is dimensional, and related to ...The shortcomings of the present two formulae for describing column holdup are analyzed and deductions are made to find a new formula. The column holdup, Hw, described by the new formula is dimensional, and related to soil solute transport kinesis and column physical properties. Compared with the other two column holdups, Hw is feasible to describe dimensional column holdup during solute transport process. The relationships between Hw and retardation factor, R, in different solute transport boundary conditions are established.展开更多
The new mode of operation for slop cut withdrawal in batch distillation, i.e., draining column liquid holdup at the end of slop cut period, was proposed. And the stopping criterion for the operation was investigated. ...The new mode of operation for slop cut withdrawal in batch distillation, i.e., draining column liquid holdup at the end of slop cut period, was proposed. And the stopping criterion for the operation was investigated. Experiments were carried out with isopropanol-n-propanol binary system and isopropanol-n-propanol-n-butanol ternary system in a distillation column with a liquid collector installed between the reboiler and the column section. Experimental results in a 45mm batch column show that the proposed policy can overcome the flywheel effect caused by column liquid holdup and thus cut down operation time and energy consumption 31%—61%.展开更多
Gas holdups of large bubbles and small bubbles were measured by means of dynamic gas disengagement approach in the pressured bubble column with a diameter of 0.3 m and a height of 6.6 m. The effects of superficial gas...Gas holdups of large bubbles and small bubbles were measured by means of dynamic gas disengagement approach in the pressured bubble column with a diameter of 0.3 m and a height of 6.6 m. The effects of superficial gas velocity, liquid surface tension, liquid viscosity and system pressure on gas holdups of small bubbles and large bubbles were investigated. The holdup of large bubbles increases and the holdup of small bubbles decreases with an increase of liquid viscosity. Meanwhile, the holdup of large bubbles decreases with increasing the system pressure. A correlation for the holdup of small bubbles was obtained from the experimental data.展开更多
Heat transfer and bubble phenomena were investigated by adopting the drift flux model in a viscous slurry bubble column reactor (SBCR), having a diameter of 0.0508 m(ID) and height 1.5 m. The effects of superficial ga...Heat transfer and bubble phenomena were investigated by adopting the drift flux model in a viscous slurry bubble column reactor (SBCR), having a diameter of 0.0508 m(ID) and height 1.5 m. The effects of superficial gas velocity (0.002 -0.164 m/s), solid concentration (0 - 20 wt%) and liquid viscosity (paraffin oil;16.9 mPa•s and squalane;25.9 mPa•s) on the gas holdup and heat transfer characteristics were examined. It was observed that the gas holdup increased with increasing superficial gas velocity (UG), but decreased with increasing solid concentration (SC) or slurry viscosity. The degree of non-uniformity in a SBCR could be determined by the modified drift flux model at the heterogeneous flow regime. The local heat transfer coefficient (h) between the immersed heater and the bed decreased with increasing liquid viscosity and SC, but it increased with increasing UG. The modified Nusselt number including the gas holdup and local heat transfer coefficient was well correlated in terms of dimensionless groups such as Reynolds and Prandtl numbers.展开更多
The experiment was conducted to explore the hydrodynamics in a conical column with a height of 3.00 m, and a taper angle of 1.91°. Three regimes occur in succession with increasing superficial gas velocity. Ove...The experiment was conducted to explore the hydrodynamics in a conical column with a height of 3.00 m, and a taper angle of 1.91°. Three regimes occur in succession with increasing superficial gas velocity. Overall gas holdup increases with an increase in gas velocity and a decrease in solid concentration or static slurry height. Axial solid holdup becomes more uniform with increasing gas velocity, while axial gas holdup decreases from the bottom to the top. Both dry and wet pressure drops across the gas distributor increase with an increase in superficial gas velocity.展开更多
文摘The new mode of operation for slop cut withdrawal in batch distillation, i.e., draining Column liquid holdup at the end of slop cut period, was proposed. And the stopping criterion for the operation was investigated, Experiments were carded out with isopropanol-n-propanol binary system and isopropanol-n-propanol-n-butanol ternary system in a distillation column with a liquid collector installed between the reboiler and the column section, Experimental results in a Ф 45mm batch column show that the proposed policy can overcome the flywheel effect caused by column liquid holdup and thus cut down operation time and energy consumption 31%-61%.
基金Project (No. 49901009) supported by the National Natural Science Foundation of China.
文摘The shortcomings of the present two formulae for describing column holdup are analyzed and deductions are made to find a new formula. The column holdup, Hw, described by the new formula is dimensional, and related to soil solute transport kinesis and column physical properties. Compared with the other two column holdups, Hw is feasible to describe dimensional column holdup during solute transport process. The relationships between Hw and retardation factor, R, in different solute transport boundary conditions are established.
文摘The new mode of operation for slop cut withdrawal in batch distillation, i.e., draining column liquid holdup at the end of slop cut period, was proposed. And the stopping criterion for the operation was investigated. Experiments were carried out with isopropanol-n-propanol binary system and isopropanol-n-propanol-n-butanol ternary system in a distillation column with a liquid collector installed between the reboiler and the column section. Experimental results in a 45mm batch column show that the proposed policy can overcome the flywheel effect caused by column liquid holdup and thus cut down operation time and energy consumption 31%—61%.
基金Supported by China Petroleum and Chem ical Corporation(No. 2 0 0 0 5 8)
文摘Gas holdups of large bubbles and small bubbles were measured by means of dynamic gas disengagement approach in the pressured bubble column with a diameter of 0.3 m and a height of 6.6 m. The effects of superficial gas velocity, liquid surface tension, liquid viscosity and system pressure on gas holdups of small bubbles and large bubbles were investigated. The holdup of large bubbles increases and the holdup of small bubbles decreases with an increase of liquid viscosity. Meanwhile, the holdup of large bubbles decreases with increasing the system pressure. A correlation for the holdup of small bubbles was obtained from the experimental data.
文摘Heat transfer and bubble phenomena were investigated by adopting the drift flux model in a viscous slurry bubble column reactor (SBCR), having a diameter of 0.0508 m(ID) and height 1.5 m. The effects of superficial gas velocity (0.002 -0.164 m/s), solid concentration (0 - 20 wt%) and liquid viscosity (paraffin oil;16.9 mPa•s and squalane;25.9 mPa•s) on the gas holdup and heat transfer characteristics were examined. It was observed that the gas holdup increased with increasing superficial gas velocity (UG), but decreased with increasing solid concentration (SC) or slurry viscosity. The degree of non-uniformity in a SBCR could be determined by the modified drift flux model at the heterogeneous flow regime. The local heat transfer coefficient (h) between the immersed heater and the bed decreased with increasing liquid viscosity and SC, but it increased with increasing UG. The modified Nusselt number including the gas holdup and local heat transfer coefficient was well correlated in terms of dimensionless groups such as Reynolds and Prandtl numbers.
文摘The experiment was conducted to explore the hydrodynamics in a conical column with a height of 3.00 m, and a taper angle of 1.91°. Three regimes occur in succession with increasing superficial gas velocity. Overall gas holdup increases with an increase in gas velocity and a decrease in solid concentration or static slurry height. Axial solid holdup becomes more uniform with increasing gas velocity, while axial gas holdup decreases from the bottom to the top. Both dry and wet pressure drops across the gas distributor increase with an increase in superficial gas velocity.