Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal...Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal that columnar to equiaxed transition (CET) is provoked by external thermal disturbance. The detaching and floating of fragments of dendrite arms are the prelude of the transition when the solute boundary layer in front of the solid-liquid interface is thin. And the dendrite triangular tip is the fracture sensitive zone. When the conditions are suitable, new dendrites can sprout and grow up. This kind of dendrite has no obvious stem and is named anaxial columnar dendrites.展开更多
The West Junggar of the western Central Asian Orogenic Belt is one of the typical regions in the term of ocean subduction, contraction and continental growth in the Late Paleozoic. However, it is still controversial o...The West Junggar of the western Central Asian Orogenic Belt is one of the typical regions in the term of ocean subduction, contraction and continental growth in the Late Paleozoic. However, it is still controversial on the exact time of ocean-continent transition so far. This study investigates rhyolites with columnar joint in the West Junggar for the first time.Based on zircon U-Pb dating, we determined that the ages of the newly-discovered rhyolites are between 303.6 and 294.5 Ma, belonging to Late Carboniferous–Early Permian, which is the oldest rhyolite with columnar joint preserved in the world at present. Geochemical results show that the characteristics of the major element compositions include a high content of SiO_2(75.78–79.20 wt%) and a moderate content of Al_2O_3(12.21–13.19 wt%). The total alkali content(K_2O +Na_2O) is 6.14–8.05 wt%, among which K_2O is 2.09–4.72 wt% and the rate of K_2O/Na_2O is 0.38–3.05. Over-based minerals such as Ne, Lc, and Ac do not appear. The contents of TiO_2(0.09–0.24 wt%), CaO(0.15–0.99 wt%) and MgO(0.06–0.18 wt%) are low. A/CNK=0.91–1.68, A/NK=1.06–1.76, and as such, these are associated with the quasi-aluminum-weak peraluminous high potassium calc-alkaline and some calc-alkaline magma series. These rhyolites show a significant negative Eu anomaly with relative enrichment of LREE and LILE(Rb, Ba, Th, U, K) and depletion of Sr, HREE and HFSE(Nb, Ta, Ti, P). These rhyolites also have the characteristics of an A2-type granite, similar to the Miaoergou batholith,which indicates they both were affected by post-orogenic extension. Combining petrological, zircon U-Pb dating and geochemical characteristics of the rhyolites, we conclude that the specific time of ocean-continent transition of the West Junggar is the Late Carboniferous–Early Permian.展开更多
From the geological structure of the columnar jointed rock mass, a visual model was established in software AUTOCAD by programming based on the algorithm of the Voronoi diagram. Furthermore, a program to convert the A...From the geological structure of the columnar jointed rock mass, a visual model was established in software AUTOCAD by programming based on the algorithm of the Voronoi diagram. Furthermore, a program to convert the AUTOCAD model into 3DEC (3-dimensional distinct element code) model was developed, and a numerical model was established in 3DEC. Moreover, the results of triaxial compression tests of columnar jointed rock masses were simulated numerically. The REV (representative element volume) scale was studied, and the result shows that the REV size is 3 m × 3 m. The proposed approach, the established model and the numerical simulation were applied to study the macro-mechanical properties and the equivalent strength parameters of the columnar jointed rock mass. The numerical simulation results are in good accordance with the in-situ test results.展开更多
Considering the S L interface morphology stability, the S L interface energy, the Joule heat produced by electric current at the S L interface, and the change of solute concentration at the S L interface indirectly ca...Considering the S L interface morphology stability, the S L interface energy, the Joule heat produced by electric current at the S L interface, and the change of solute concentration at the S L interface indirectly caused by electric current, the mechanism of reduction of columnar dendrite spacing in unidirectional solidification caused by electric current passing through solid liquid interface was studied. The following conclusions can be drawn that: 1) under sub rapid solidification condition, increasing electric current density will improve the stability of S L interface, thus decreasing the columnar dendrite spacing; 2)there are two ways by which the increase of electric current decreases the columnar dendrite spacing, one is promoting the splitting of the protruding tips at the S L interface, the other is promoting the forming of new convex parts at the bottom of the concave interface.[展开更多
The columnar jointed rock mass(CJR), composed of polygonal cross-sectional columns cut by several groups of joints in various directions, was exposed during the excavations of the Baihetan hydropower station, China. I...The columnar jointed rock mass(CJR), composed of polygonal cross-sectional columns cut by several groups of joints in various directions, was exposed during the excavations of the Baihetan hydropower station, China. In order to investigate the unloading performances and the stability conditions during excavation of the columns, an experimental field study was performed. Firstly, on-site investigations indicated that the geotechnical problems, including rock relaxation, cracking and collapse, were the most prominent for the CJR Class I that contains intensive joint network and the smallest column sizes.Comprehensive field tests, including deformation measurement by multi-point extensometers, ultrasonic wave testing, borehole television observation and stress monitoring of rock anchors, revealed that the time-dependent relaxation of the CJRs was marked. The practical excavation experiences for the Baihetan columnar jointed rock masses, such as blasting scheme, supporting time of shotcrete and rock bolts, were presented in the excavations of the diversion tunnels. These detailed investigations and practical construction experiences can provide helpful information for similar geotechnical works in jointed rock mass.展开更多
Columnar nanocrystalline aluminum nitride(cnc-AlN) thin films with(002) orientation and uniform texture have been deposited successfully on large silicon wafers by RF reactive magnetron sputtering.At the optimum sputt...Columnar nanocrystalline aluminum nitride(cnc-AlN) thin films with(002) orientation and uniform texture have been deposited successfully on large silicon wafers by RF reactive magnetron sputtering.At the optimum sputtering parameters, the deposited cnc-AlN thin films show a c-axis preferred orientation with a crystallite size of about 28 nm and surface roughness(RMS) of about 1.29 nm. The cnc-AlN thin films were well transparent with an optical band gap about 4.8 e V, and the residual compressive stress and the defect density in the film have been revealed by Ramon spectroscopy. Moreover, piezoelectric performances of the cnc-AlN thin films executed effectively in a film bulk acoustic resonator structure.展开更多
The effect of titanium content on the refinement of austenite grain size in as-cast peritectic carbon steel was investigated by fast directional solidification experiments with simulating the solidification and growth...The effect of titanium content on the refinement of austenite grain size in as-cast peritectic carbon steel was investigated by fast directional solidification experiments with simulating the solidification and growth of surface and subsurface austenite in continuously cast slabs.Transmission electron microscope(TEM)and scanning electron microscope(SEM)were used to analyze the size and distribution of Ti(C,N)precipitates during solidification.Based on these results,the pinning pressure of Ti(C,N)precipitates on the growth of coarse columnar grains(CCGs)was studied.The results show that the austenite microstructure of as-cast peritectic carbon steel is mainly composed of the regions of CCGs and fine columnar grains(FCGs).Increasing the content of titanium reduces the region and the short axis of the CCGs.When the content of titanium is 0.09wt%,there is no CCG region.Dispersed microscale particles will firstly form in the liquid,which will decrease the transition temperature from FCGs to CCGs.The chain-like nanoscale Ti(C,N)will precipitate with the decrease of the transition temperature.Furthermore,calculations shows that the refinement of the CCGs is caused by the pinning effect of Ti(C,N)precipitates.展开更多
According to the hydraulic calculation principles of the orifice outflow, the discharge capacity of the columnar reversing gate under the partial opening condition was calculated and checked. Using ANSYS, a large fini...According to the hydraulic calculation principles of the orifice outflow, the discharge capacity of the columnar reversing gate under the partial opening condition was calculated and checked. Using ANSYS, a large finite element analysis software, the discharge process was simulated. The distribution rule of the velocities in the gate chamber and downstream channel was obtained. An FEM model of the columnar reversing gate was built, and the natural vibration properties of the gate were analyzed. Based on the Westergaard added mass method, the added mass caused by the fluid-structure coupling motion was taken into account, and the effects of the coupling interaction were discussed. The results show that the size of the small gates meets the demand for discharge capacity, the current in the gate chamber is quite turbulent, the trunnion and arms are obviously impacted by flow, and the effects of water on vibration characteristics are remarkable. The study provides a reference for the design and calculation of gates of the same type.展开更多
The reason why elongation of copper bars with columnar grains drops significantly after small cold-drawing was explored. The copper bars were prepared by warm-mould continuous casting. Tensile test was interrupted at ...The reason why elongation of copper bars with columnar grains drops significantly after small cold-drawing was explored. The copper bars were prepared by warm-mould continuous casting. Tensile test was interrupted at various tensile strains in order to detect crack origin. Electron backscattered diffraction(EBSD) was used to analyze dislocation slip bands. It is found that the as-cast microstructure contains sharp grain boundary(GB) corners nearly parallel to the solidification direction(SD). Elongation of the copper bars drops significantly from 68.8% in as-cast state to 18.8% in as-drawn state. It is revealed that plastic deformation becomes severer in the vicinity of sharp GB corners. Locally accumulated internal stress even activates a slip system with very low Schmid factor of 0.17. The localized plastic deformation near sharp grain boundary corner promotes crack initiation and propagation, which eventually leads to the significant drop of elongation.展开更多
AIM: To explore methylation of DAPK, THBS1, CDH-1, and p14 genes, and Helicobacter pylori(H. pylori) status in individuals harboring esophageal columnar metaplasia.METHODS: Distal esophageal mucosal samples obtained b...AIM: To explore methylation of DAPK, THBS1, CDH-1, and p14 genes, and Helicobacter pylori(H. pylori) status in individuals harboring esophageal columnar metaplasia.METHODS: Distal esophageal mucosal samples obtained by endoscopy and histologically diagnosed as gastric-type(non-specialized) columnar metaplasia, were studied thoroughly. DNA was extracted from paraffin blocks, and methylation status of deathassociated protein kinase(DAPK), thrombospondin-1(THBS1), cadherin-1(CDH1), and p14 genes, was examined using a methyl-sensitive polymerase chain reaction(MS-PCR) and sodium bisulfite modification protocol. H. pylori cag A status was determined by PCR.RESULTS: In total, 68 subjects(33 females and 35 males), with a mean age of 52 years, were included. H. pylori cag A positive was present in the esophageal gastric-type metaplastic mucosa of 18 individuals. DAPK, THSB1, CDH1, and p14 gene promoters were methylated by MS-PCR in 40(58.8%), 33(48.5%), 46(67.6%), and 23(33.8%) cases of the 68 esophageal samples. H. pyloristatus was associated with methylation of DAPK(P = 0.003) and THBS1(P = 0.019).CONCLUSION: DNA methylation occurs in cases of gastric-type(non-specialized) columnar metaplasia of the esophagus, and this modification is associated with H. pylori cag A positive infection.展开更多
Columnar jointed rock mass with unique geometric and geological properties is one spectacular example of geometrical order in nature.Columnar joints are generally accepted to be formed by spatially uniform volume cont...Columnar jointed rock mass with unique geometric and geological properties is one spectacular example of geometrical order in nature.Columnar joints are generally accepted to be formed by spatially uniform volume contraction during cooling.In this paper,substantial field work was performed to study the geological characteristics of irregular columnar jointed basalt on the left bank dam foundation in the Baihetan Hydropower Station,where the columnar jointed rock mass is extensively exposed due to excavation.The quantitative measurements of the sizing of polygonal crack pattern of columnar joints and assessment of their degree of irregularity were summarized.Considering the irregularity of polygonal crack pattern,a modified Voronoi polygon(MVP)method was developed to model the special polygonal crack pattern of columnar joints.The new polygonal pattern obtained by the MVP method consists of a large number of irregular polygons,of which the degree of irregularity is consistent with the field measurement results.This method can reproduce the rapid evolution from an initial ideal regular hexagonal pattern to a final actual irregular polygonal pattern as the degree of irregularity increases.The compression tests of columnar jointed rock mass with different irregularity show that the geometric irregularity has a great influence on its mechanical properties.This numerical construction method provides a reliable way to reconstruct columnar joint structure with specific polygonal crack pattern,which is consistent with onsite columnar jointed basalt.展开更多
The irregularity of jointed network poses a challenge to the determination of field mechanical param-eters of columnar jointed rock mass(CJRM),and a reasonable prediction of deformation and strength characteristics of...The irregularity of jointed network poses a challenge to the determination of field mechanical param-eters of columnar jointed rock mass(CJRM),and a reasonable prediction of deformation and strength characteristics of CJRM is important for engineering construction.The Voronoi diagram and three-dimensional printing technology were used to make an irregular columnar jointed mold,and the irregular CJRM(ICJRM)specimens with different dip directions and dip angles were prepared.Uniaxial compression tests were performed,and the anisotropic strength and deformation characteristics of ICJRM were described.The failure modes and mechanisms were revealed in accordance with the final appearances of the ICJRM specimens.Based on the model test results,the empirical correlations for determining the field deformation and strength parameters of CJRM were derived using the dip angle and modified joint factor.The proposed empirical equations were used in the Baihetan Project,and the calculated mechanical parameters were compared with the field test results and those obtained from the tunneling quality index method.Results showed that the deformation parameters determined by the two proposed methods are all consistent with the field test results,and these two methods can also estimate the strength parameters effectively.展开更多
Columnar jointed basalt, with a lot of small-spacing structural planes and poor integrity, is a kind of fractured rock mass. Through comprehensive study of columnar joints shape, roughness of fracture surface and chem...Columnar jointed basalt, with a lot of small-spacing structural planes and poor integrity, is a kind of fractured rock mass. Through comprehensive study of columnar joints shape, roughness of fracture surface and chemical composition of basalt, it is known that columnar joints of Baihetan dam area were formed as a result of cooling and shrinkage effects of magma. The columnar jointed basalt is mainly formed through chemical reaction of chlorite, kaolinite, epidote and tremolite, and the columnar joints mainly consist of chlorite according to slice identification and chemical analysis. Test results show that the columnar jointed basalt has high uniaxial compressive strength, low friction coefficient, and high cohesion, shear strength and deformation index. Meanwhile, the columnar jointed basalt is closely locked, and joint surfaces are well closed. The permeability of the rock is quite weak, and the P-wave velocity in the rock could get up to 5 000 m/s. All these show good rock properties. The columnar joints develop regularly, different from the general fractured rock masses. In summary, the columnar jointed basalt can be used directly as a foundation of dam.展开更多
This paper applies a phase field model for polycrystalline solidification in binary alloys to simulate the formation and growth of the columnar dendritic array under the isothermal and constant cooling conditions. The...This paper applies a phase field model for polycrystalline solidification in binary alloys to simulate the formation and growth of the columnar dendritic array under the isothermal and constant cooling conditions. The solidification process and microsegregation in the mushy zone are analysed in detail. It is shown that under the isothermal condition solidification will stop after the formation of the mushy zone, but dendritic coarsening will progress continuously, which results in the decrease of the total interface area. Under the constant cooling condition the mushy zone will solidify and coarsen simultaneously. For the constant cooling solidification, microsegregation predicted by a modified Brody- Flemings model is compared with the simulation results. It is found that the Fourier number which characterizes microsegregation is different for regions with different microstructures. Dendritic coarsening and the larger area of interface should account for the enhanced Fourier number in the region with well developed second dendritic arms.展开更多
In order to investigate the effect of the thickness on the electrical conductivity of yttriastabilized zirconia(YSZ) film, the nanocrystalline columnar-structured YSZ film with thickness of 0.67-2.52 μm was prepared ...In order to investigate the effect of the thickness on the electrical conductivity of yttriastabilized zirconia(YSZ) film, the nanocrystalline columnar-structured YSZ film with thickness of 0.67-2.52 μm was prepared by magnetron sputtering through controlling the deposition time. All the sputtered films with different thicknesses consist of the main phase of cubic YSZ as well as a small amount of monoclinic YSZ. The thicker films exhibit a typical columnar grain structure based on the fractured cross-sectional SEM observations. The average diameters of columnar grains increase from about 40 nm to 100 nm with the film thickness from 0.67 μm to 2.52 μm according to TEM analysis. The thinnest YSZ film with 0.67 μm thickness shows the highest apparent electrical conductivity in the four films in 400-800 ℃ due to the contribution from the highly conductive film/substrate interfacial region. On the other hand, the real electrical conductivities of YSZ films increase with film thickness from 0.67 μm to 2.52 μm after eliminating the contribution of the film/substrate interface. The increasing film thickness leads to the grain growth as well as the decrement in the volumetric fraction of the resistive columnar grain boundary and a consequent higher real electrical conductivity.展开更多
BACKGROUND Transurethral columnar balloon dilatation of the prostate(TUCBDP) is a new surgical treatment, but its efficacy remains controversial because of limited clinical application.AIM To investigate the clinical ...BACKGROUND Transurethral columnar balloon dilatation of the prostate(TUCBDP) is a new surgical treatment, but its efficacy remains controversial because of limited clinical application.AIM To investigate the clinical effect of TUCBDP for benign prostatic hyperplasia(BPH).METHODS Overall, 140 patients with BPH who underwent surgical treatment were included in the study. A random number table was used to divide the participants into study and control groups(n = 70 per group). The study group underwent TUCBDP. The prostate resection surgical time, intraoperative blood loss, bladder irrigation time, catheter indwelling time, length of hospital stay, International Prostate Symptom Score(IPSS), maximum urine flow rate(Qmax), residual urine volume(RUV), changes in the International Erectile Function Score(ⅡEF-5) score, serum prostate-specific antigen(PSA), quality of life(QOL) score, and surgical complications were compared in both groups.RESULTS The operation time, intraoperative blood loss volume, bladder flushing time, urinary catheter indwelling time, and length of hospital stay were significantly lower in the study group than in the control group(P < 0.05). There were no significant differences in the IPSS, Qmax, and RUV measurements between the study and control groups(P > 0.05). However, at 3 mo post-surgery, the IPSS and RUV measurements were both lower(P < 0.05) and Qmax values were higher(P < 0.05) compared to the pre-surgery results in both groups. The ⅡEF-5 scores before and 3 mo after surgery were not significantly different between the study and control groups(P > 0.05). At 1 mo after surgery, the ⅡEF-5 score was higher in the study group than in the control group(P < 0.05). The serum PSA levels and QOL scores before treatment and at 1 and 3 mo after treatment were not significantly different between the study and control groups(P > 0.05). However, lower serum PSA levels and QOL scores were observed after 1 and 3 mo of treatment compared to pre-treatment levels in the study group(P < 0.05). The surgical complication rate of the study group(4.29%) was lower than that of the control group(12.86%;P < 0.05).CONCLUSION TUCBDP for BPH and transurethral resection of the prostate can achieve better results, but the former method is associated with less surgical trauma.展开更多
The dynamic recrystallization(DRX) behavior of continuous columnar-grained(CCG) Cu Ni10Fe1 Mn alloy was investigated by hot compression along the solidification direction(SD) and perpendicular to the solidificat...The dynamic recrystallization(DRX) behavior of continuous columnar-grained(CCG) Cu Ni10Fe1 Mn alloy was investigated by hot compression along the solidification direction(SD) and perpendicular to the solidification direction(PD). Specimens were compressed to a true strain of 0.8 at temperatures ranging from 25°C to 900°C and strain rates ranging from 0.01 to 10 s-1. The results indicate that DRX nucleation at grain boundaries(GBs) and DRX nucleation at slip bands(SBs) are the two main nucleation modes. For SD specimens, C-shaped bending and zig-zagging of the GBs occurred during hot compression, which made DRX nucleation at the GBs easier than that at the SBs. When ln Z ≤ 37.4(Z is the Zener–Hollomon parameter), DRX can occur in SD specimens with a critical temperature for the DRX onset of;50°C and a thermal activated energy(Q) of 313.5 k J·mol-1. In contrast, in PD specimens, the GBs remained straight, and DRX nucleation occurred preferentially at the SBs. For PD specimens, the critical temperature is about 700°C, Q is 351.7 k J·mol-1, and the occurrence condition of DRX is ln Z ≤ 40.1. The zig-zagging of GB morphology can significantly reduce the nucleation energy at the GBs; as a result, DRX nucleation occurs more easily in SD specimens than in PD specimens.展开更多
Isothermal hot compression tests of as-cast high-Cr ultra-super-critical(USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250...Isothermal hot compression tests of as-cast high-Cr ultra-super-critical(USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250°C at strain rates ranging from 0.001 to 1 s^(-1). The softening mechanism was dynamic recovery(DRV) at 950°C and the strain rate of 1 s^(-1), whereas it was dynamic recrystallization(DRX) under the other conditions. A modified constitutive equation based on the Arrhenius model with strain compensation reasonably predicted the flow stress under various deformation conditions, and the activation energy was calculated to be 643.92 kJ ×mol^(-1). The critical stresses of dynamic recrystallization under different conditions were determined from the work-hardening rate(θ)–flow stress(σ) and-θ/σ–σ curves. The optimum processing parameters via analysis of the processing map and the softening mechanism were determined to be a deformation temperature range from 1100 to 1200°C and a strain-rate range from 0.001 to 0.08 s^(-1), with a power dissipation efficiency η greater than 31%.展开更多
For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of inte...For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of interface mechanics for composite materials,the interface stresses of the vertical and horizontal joints,which are the two primary joints in the CJRM under triaxial compression,are studied,and their mathematical expressions are derived based on the superposition principle.Based on the obtained interface stresses of the vertical and horizontal joints in the CJRM,the crack initiation of the joint interface in the CJRM is studied using the maximum circumferential stress theory in fracture mechanics.Moreover,based on this investigation,the fracture behaviors of CJRM are analyzed.According to the results of similar material physical model tests for the CJRM,the theoretical study is verified.Finally,the influence of the mechanical parameters of the CJRM on the joint interface stress is discussed comprehensively.展开更多
The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C ...The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with aging-temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ ·mol1. Finally, a columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with both excellent superelasticity(5%-9%) and high martensitic transformation critical stress(443-677 MPa) is obtained through the application of the appropriate aging treatments.展开更多
基金Project(51001074)supported by the National Natural Science Foundation of ChinaProject(12ZR1414500)supported by Shanghai Municipal Natural Science Fund of ChinaProject(2012CB619505)supported by the National Basic Research Program of China
文摘Directional solidification of Al-15% (mass fraction) Cu alloy was investigated by in situ and real time radiography which was performed by Shanghai synchrotron radiation facility (SSRF). The imaging results reveal that columnar to equiaxed transition (CET) is provoked by external thermal disturbance. The detaching and floating of fragments of dendrite arms are the prelude of the transition when the solute boundary layer in front of the solid-liquid interface is thin. And the dendrite triangular tip is the fracture sensitive zone. When the conditions are suitable, new dendrites can sprout and grow up. This kind of dendrite has no obvious stem and is named anaxial columnar dendrites.
基金supported by the China Geological Survey (grant numbers DD20160083 and DD20160344-05)the National Key Research and Development Program of China (grant numbers 2018YFC0603701)Fundamental Research Funds for Central Public Welfare Research Institutes (grant numbers CAGS-YWF201706)
文摘The West Junggar of the western Central Asian Orogenic Belt is one of the typical regions in the term of ocean subduction, contraction and continental growth in the Late Paleozoic. However, it is still controversial on the exact time of ocean-continent transition so far. This study investigates rhyolites with columnar joint in the West Junggar for the first time.Based on zircon U-Pb dating, we determined that the ages of the newly-discovered rhyolites are between 303.6 and 294.5 Ma, belonging to Late Carboniferous–Early Permian, which is the oldest rhyolite with columnar joint preserved in the world at present. Geochemical results show that the characteristics of the major element compositions include a high content of SiO_2(75.78–79.20 wt%) and a moderate content of Al_2O_3(12.21–13.19 wt%). The total alkali content(K_2O +Na_2O) is 6.14–8.05 wt%, among which K_2O is 2.09–4.72 wt% and the rate of K_2O/Na_2O is 0.38–3.05. Over-based minerals such as Ne, Lc, and Ac do not appear. The contents of TiO_2(0.09–0.24 wt%), CaO(0.15–0.99 wt%) and MgO(0.06–0.18 wt%) are low. A/CNK=0.91–1.68, A/NK=1.06–1.76, and as such, these are associated with the quasi-aluminum-weak peraluminous high potassium calc-alkaline and some calc-alkaline magma series. These rhyolites show a significant negative Eu anomaly with relative enrichment of LREE and LILE(Rb, Ba, Th, U, K) and depletion of Sr, HREE and HFSE(Nb, Ta, Ti, P). These rhyolites also have the characteristics of an A2-type granite, similar to the Miaoergou batholith,which indicates they both were affected by post-orogenic extension. Combining petrological, zircon U-Pb dating and geochemical characteristics of the rhyolites, we conclude that the specific time of ocean-continent transition of the West Junggar is the Late Carboniferous–Early Permian.
基金Projects(50911130366, 50979030) supported by the National Natural Science Foundation of China
文摘From the geological structure of the columnar jointed rock mass, a visual model was established in software AUTOCAD by programming based on the algorithm of the Voronoi diagram. Furthermore, a program to convert the AUTOCAD model into 3DEC (3-dimensional distinct element code) model was developed, and a numerical model was established in 3DEC. Moreover, the results of triaxial compression tests of columnar jointed rock masses were simulated numerically. The REV (representative element volume) scale was studied, and the result shows that the REV size is 3 m × 3 m. The proposed approach, the established model and the numerical simulation were applied to study the macro-mechanical properties and the equivalent strength parameters of the columnar jointed rock mass. The numerical simulation results are in good accordance with the in-situ test results.
文摘Considering the S L interface morphology stability, the S L interface energy, the Joule heat produced by electric current at the S L interface, and the change of solute concentration at the S L interface indirectly caused by electric current, the mechanism of reduction of columnar dendrite spacing in unidirectional solidification caused by electric current passing through solid liquid interface was studied. The following conclusions can be drawn that: 1) under sub rapid solidification condition, increasing electric current density will improve the stability of S L interface, thus decreasing the columnar dendrite spacing; 2)there are two ways by which the increase of electric current decreases the columnar dendrite spacing, one is promoting the splitting of the protruding tips at the S L interface, the other is promoting the forming of new convex parts at the bottom of the concave interface.[
基金the financial support from the International Partnership Program of Chinese Academy of Sciences(Grant No.115242KYSB20160017)the Key Project of Natural Science Foundation of China(Grant No.11232014)National Natural Science Foundation of China(Grant No.51379202)
文摘The columnar jointed rock mass(CJR), composed of polygonal cross-sectional columns cut by several groups of joints in various directions, was exposed during the excavations of the Baihetan hydropower station, China. In order to investigate the unloading performances and the stability conditions during excavation of the columns, an experimental field study was performed. Firstly, on-site investigations indicated that the geotechnical problems, including rock relaxation, cracking and collapse, were the most prominent for the CJR Class I that contains intensive joint network and the smallest column sizes.Comprehensive field tests, including deformation measurement by multi-point extensometers, ultrasonic wave testing, borehole television observation and stress monitoring of rock anchors, revealed that the time-dependent relaxation of the CJRs was marked. The practical excavation experiences for the Baihetan columnar jointed rock masses, such as blasting scheme, supporting time of shotcrete and rock bolts, were presented in the excavations of the diversion tunnels. These detailed investigations and practical construction experiences can provide helpful information for similar geotechnical works in jointed rock mass.
文摘Columnar nanocrystalline aluminum nitride(cnc-AlN) thin films with(002) orientation and uniform texture have been deposited successfully on large silicon wafers by RF reactive magnetron sputtering.At the optimum sputtering parameters, the deposited cnc-AlN thin films show a c-axis preferred orientation with a crystallite size of about 28 nm and surface roughness(RMS) of about 1.29 nm. The cnc-AlN thin films were well transparent with an optical band gap about 4.8 e V, and the residual compressive stress and the defect density in the film have been revealed by Ramon spectroscopy. Moreover, piezoelectric performances of the cnc-AlN thin films executed effectively in a film bulk acoustic resonator structure.
基金financially supported by the National Natural Science Foundation of China (Nos.51774075 and52174307)Liao Ning Revitalization Talents Program,China(No.XLYC1802032)
文摘The effect of titanium content on the refinement of austenite grain size in as-cast peritectic carbon steel was investigated by fast directional solidification experiments with simulating the solidification and growth of surface and subsurface austenite in continuously cast slabs.Transmission electron microscope(TEM)and scanning electron microscope(SEM)were used to analyze the size and distribution of Ti(C,N)precipitates during solidification.Based on these results,the pinning pressure of Ti(C,N)precipitates on the growth of coarse columnar grains(CCGs)was studied.The results show that the austenite microstructure of as-cast peritectic carbon steel is mainly composed of the regions of CCGs and fine columnar grains(FCGs).Increasing the content of titanium reduces the region and the short axis of the CCGs.When the content of titanium is 0.09wt%,there is no CCG region.Dispersed microscale particles will firstly form in the liquid,which will decrease the transition temperature from FCGs to CCGs.The chain-like nanoscale Ti(C,N)will precipitate with the decrease of the transition temperature.Furthermore,calculations shows that the refinement of the CCGs is caused by the pinning effect of Ti(C,N)precipitates.
文摘According to the hydraulic calculation principles of the orifice outflow, the discharge capacity of the columnar reversing gate under the partial opening condition was calculated and checked. Using ANSYS, a large finite element analysis software, the discharge process was simulated. The distribution rule of the velocities in the gate chamber and downstream channel was obtained. An FEM model of the columnar reversing gate was built, and the natural vibration properties of the gate were analyzed. Based on the Westergaard added mass method, the added mass caused by the fluid-structure coupling motion was taken into account, and the effects of the coupling interaction were discussed. The results show that the size of the small gates meets the demand for discharge capacity, the current in the gate chamber is quite turbulent, the trunnion and arms are obviously impacted by flow, and the effects of water on vibration characteristics are remarkable. The study provides a reference for the design and calculation of gates of the same type.
基金Project(2016YFB0301300) supported by the National Key R&D Program of ChinaProject(51674027) supported by the National Natural Science Foundation of China+1 种基金Project(2152020) supported by Beijing Natural Science Foundation,ChinaProject(2015AA034304) supported by the National High-Tech Research and Development Program of China
文摘The reason why elongation of copper bars with columnar grains drops significantly after small cold-drawing was explored. The copper bars were prepared by warm-mould continuous casting. Tensile test was interrupted at various tensile strains in order to detect crack origin. Electron backscattered diffraction(EBSD) was used to analyze dislocation slip bands. It is found that the as-cast microstructure contains sharp grain boundary(GB) corners nearly parallel to the solidification direction(SD). Elongation of the copper bars drops significantly from 68.8% in as-cast state to 18.8% in as-drawn state. It is revealed that plastic deformation becomes severer in the vicinity of sharp GB corners. Locally accumulated internal stress even activates a slip system with very low Schmid factor of 0.17. The localized plastic deformation near sharp grain boundary corner promotes crack initiation and propagation, which eventually leads to the significant drop of elongation.
文摘AIM: To explore methylation of DAPK, THBS1, CDH-1, and p14 genes, and Helicobacter pylori(H. pylori) status in individuals harboring esophageal columnar metaplasia.METHODS: Distal esophageal mucosal samples obtained by endoscopy and histologically diagnosed as gastric-type(non-specialized) columnar metaplasia, were studied thoroughly. DNA was extracted from paraffin blocks, and methylation status of deathassociated protein kinase(DAPK), thrombospondin-1(THBS1), cadherin-1(CDH1), and p14 genes, was examined using a methyl-sensitive polymerase chain reaction(MS-PCR) and sodium bisulfite modification protocol. H. pylori cag A status was determined by PCR.RESULTS: In total, 68 subjects(33 females and 35 males), with a mean age of 52 years, were included. H. pylori cag A positive was present in the esophageal gastric-type metaplastic mucosa of 18 individuals. DAPK, THSB1, CDH1, and p14 gene promoters were methylated by MS-PCR in 40(58.8%), 33(48.5%), 46(67.6%), and 23(33.8%) cases of the 68 esophageal samples. H. pyloristatus was associated with methylation of DAPK(P = 0.003) and THBS1(P = 0.019).CONCLUSION: DNA methylation occurs in cases of gastric-type(non-specialized) columnar metaplasia of the esophagus, and this modification is associated with H. pylori cag A positive infection.
基金Projects(51621006,51779251)supported by the National Natural Science Foundation of China。
文摘Columnar jointed rock mass with unique geometric and geological properties is one spectacular example of geometrical order in nature.Columnar joints are generally accepted to be formed by spatially uniform volume contraction during cooling.In this paper,substantial field work was performed to study the geological characteristics of irregular columnar jointed basalt on the left bank dam foundation in the Baihetan Hydropower Station,where the columnar jointed rock mass is extensively exposed due to excavation.The quantitative measurements of the sizing of polygonal crack pattern of columnar joints and assessment of their degree of irregularity were summarized.Considering the irregularity of polygonal crack pattern,a modified Voronoi polygon(MVP)method was developed to model the special polygonal crack pattern of columnar joints.The new polygonal pattern obtained by the MVP method consists of a large number of irregular polygons,of which the degree of irregularity is consistent with the field measurement results.This method can reproduce the rapid evolution from an initial ideal regular hexagonal pattern to a final actual irregular polygonal pattern as the degree of irregularity increases.The compression tests of columnar jointed rock mass with different irregularity show that the geometric irregularity has a great influence on its mechanical properties.This numerical construction method provides a reliable way to reconstruct columnar joint structure with specific polygonal crack pattern,which is consistent with onsite columnar jointed basalt.
基金This work was supported by the Fundamental Research Funds for the Central Universities,the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX21_0487)the National Natural Science Foundation of China(Grant Nos.41831278,and 51579081).
文摘The irregularity of jointed network poses a challenge to the determination of field mechanical param-eters of columnar jointed rock mass(CJRM),and a reasonable prediction of deformation and strength characteristics of CJRM is important for engineering construction.The Voronoi diagram and three-dimensional printing technology were used to make an irregular columnar jointed mold,and the irregular CJRM(ICJRM)specimens with different dip directions and dip angles were prepared.Uniaxial compression tests were performed,and the anisotropic strength and deformation characteristics of ICJRM were described.The failure modes and mechanisms were revealed in accordance with the final appearances of the ICJRM specimens.Based on the model test results,the empirical correlations for determining the field deformation and strength parameters of CJRM were derived using the dip angle and modified joint factor.The proposed empirical equations were used in the Baihetan Project,and the calculated mechanical parameters were compared with the field test results and those obtained from the tunneling quality index method.Results showed that the deformation parameters determined by the two proposed methods are all consistent with the field test results,and these two methods can also estimate the strength parameters effectively.
基金Supported by the National Natural Science Foundation of China (41172254)the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology (SKLGP2010K020)
文摘Columnar jointed basalt, with a lot of small-spacing structural planes and poor integrity, is a kind of fractured rock mass. Through comprehensive study of columnar joints shape, roughness of fracture surface and chemical composition of basalt, it is known that columnar joints of Baihetan dam area were formed as a result of cooling and shrinkage effects of magma. The columnar jointed basalt is mainly formed through chemical reaction of chlorite, kaolinite, epidote and tremolite, and the columnar joints mainly consist of chlorite according to slice identification and chemical analysis. Test results show that the columnar jointed basalt has high uniaxial compressive strength, low friction coefficient, and high cohesion, shear strength and deformation index. Meanwhile, the columnar jointed basalt is closely locked, and joint surfaces are well closed. The permeability of the rock is quite weak, and the P-wave velocity in the rock could get up to 5 000 m/s. All these show good rock properties. The columnar joints develop regularly, different from the general fractured rock masses. In summary, the columnar jointed basalt can be used directly as a foundation of dam.
基金supported by the National Natural Science Foundation of China (Grant No 50401013)Doctorate Foundation of Northwestern Polytechnical University,China
文摘This paper applies a phase field model for polycrystalline solidification in binary alloys to simulate the formation and growth of the columnar dendritic array under the isothermal and constant cooling conditions. The solidification process and microsegregation in the mushy zone are analysed in detail. It is shown that under the isothermal condition solidification will stop after the formation of the mushy zone, but dendritic coarsening will progress continuously, which results in the decrease of the total interface area. Under the constant cooling condition the mushy zone will solidify and coarsen simultaneously. For the constant cooling solidification, microsegregation predicted by a modified Brody- Flemings model is compared with the simulation results. It is found that the Fourier number which characterizes microsegregation is different for regions with different microstructures. Dendritic coarsening and the larger area of interface should account for the enhanced Fourier number in the region with well developed second dendritic arms.
基金Funded by the National Natural Science Foundation of China(51462018)
文摘In order to investigate the effect of the thickness on the electrical conductivity of yttriastabilized zirconia(YSZ) film, the nanocrystalline columnar-structured YSZ film with thickness of 0.67-2.52 μm was prepared by magnetron sputtering through controlling the deposition time. All the sputtered films with different thicknesses consist of the main phase of cubic YSZ as well as a small amount of monoclinic YSZ. The thicker films exhibit a typical columnar grain structure based on the fractured cross-sectional SEM observations. The average diameters of columnar grains increase from about 40 nm to 100 nm with the film thickness from 0.67 μm to 2.52 μm according to TEM analysis. The thinnest YSZ film with 0.67 μm thickness shows the highest apparent electrical conductivity in the four films in 400-800 ℃ due to the contribution from the highly conductive film/substrate interfacial region. On the other hand, the real electrical conductivities of YSZ films increase with film thickness from 0.67 μm to 2.52 μm after eliminating the contribution of the film/substrate interface. The increasing film thickness leads to the grain growth as well as the decrement in the volumetric fraction of the resistive columnar grain boundary and a consequent higher real electrical conductivity.
文摘BACKGROUND Transurethral columnar balloon dilatation of the prostate(TUCBDP) is a new surgical treatment, but its efficacy remains controversial because of limited clinical application.AIM To investigate the clinical effect of TUCBDP for benign prostatic hyperplasia(BPH).METHODS Overall, 140 patients with BPH who underwent surgical treatment were included in the study. A random number table was used to divide the participants into study and control groups(n = 70 per group). The study group underwent TUCBDP. The prostate resection surgical time, intraoperative blood loss, bladder irrigation time, catheter indwelling time, length of hospital stay, International Prostate Symptom Score(IPSS), maximum urine flow rate(Qmax), residual urine volume(RUV), changes in the International Erectile Function Score(ⅡEF-5) score, serum prostate-specific antigen(PSA), quality of life(QOL) score, and surgical complications were compared in both groups.RESULTS The operation time, intraoperative blood loss volume, bladder flushing time, urinary catheter indwelling time, and length of hospital stay were significantly lower in the study group than in the control group(P < 0.05). There were no significant differences in the IPSS, Qmax, and RUV measurements between the study and control groups(P > 0.05). However, at 3 mo post-surgery, the IPSS and RUV measurements were both lower(P < 0.05) and Qmax values were higher(P < 0.05) compared to the pre-surgery results in both groups. The ⅡEF-5 scores before and 3 mo after surgery were not significantly different between the study and control groups(P > 0.05). At 1 mo after surgery, the ⅡEF-5 score was higher in the study group than in the control group(P < 0.05). The serum PSA levels and QOL scores before treatment and at 1 and 3 mo after treatment were not significantly different between the study and control groups(P > 0.05). However, lower serum PSA levels and QOL scores were observed after 1 and 3 mo of treatment compared to pre-treatment levels in the study group(P < 0.05). The surgical complication rate of the study group(4.29%) was lower than that of the control group(12.86%;P < 0.05).CONCLUSION TUCBDP for BPH and transurethral resection of the prostate can achieve better results, but the former method is associated with less surgical trauma.
基金financially supported by the National Key Technology Research and Development Program of China (No. 2011BAE23B00)the National Natural Science Foundation of China (No. 51104015)+1 种基金the Independent Research Program of State Key Laboratory for Advanced Metals and Materials (No. 2012Z-12)the fund of the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals (SKL-SPM-201204)
文摘The dynamic recrystallization(DRX) behavior of continuous columnar-grained(CCG) Cu Ni10Fe1 Mn alloy was investigated by hot compression along the solidification direction(SD) and perpendicular to the solidification direction(PD). Specimens were compressed to a true strain of 0.8 at temperatures ranging from 25°C to 900°C and strain rates ranging from 0.01 to 10 s-1. The results indicate that DRX nucleation at grain boundaries(GBs) and DRX nucleation at slip bands(SBs) are the two main nucleation modes. For SD specimens, C-shaped bending and zig-zagging of the GBs occurred during hot compression, which made DRX nucleation at the GBs easier than that at the SBs. When ln Z ≤ 37.4(Z is the Zener–Hollomon parameter), DRX can occur in SD specimens with a critical temperature for the DRX onset of;50°C and a thermal activated energy(Q) of 313.5 k J·mol-1. In contrast, in PD specimens, the GBs remained straight, and DRX nucleation occurred preferentially at the SBs. For PD specimens, the critical temperature is about 700°C, Q is 351.7 k J·mol-1, and the occurrence condition of DRX is ln Z ≤ 40.1. The zig-zagging of GB morphology can significantly reduce the nucleation energy at the GBs; as a result, DRX nucleation occurs more easily in SD specimens than in PD specimens.
基金supported by the Major State Basic Research Development Program of China (No.2011CB012900)the National Natural Science Foundation of China (No.51374144)the Shanghai Rising-Star Program (No.14QA1402300)
文摘Isothermal hot compression tests of as-cast high-Cr ultra-super-critical(USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250°C at strain rates ranging from 0.001 to 1 s^(-1). The softening mechanism was dynamic recovery(DRV) at 950°C and the strain rate of 1 s^(-1), whereas it was dynamic recrystallization(DRX) under the other conditions. A modified constitutive equation based on the Arrhenius model with strain compensation reasonably predicted the flow stress under various deformation conditions, and the activation energy was calculated to be 643.92 kJ ×mol^(-1). The critical stresses of dynamic recrystallization under different conditions were determined from the work-hardening rate(θ)–flow stress(σ) and-θ/σ–σ curves. The optimum processing parameters via analysis of the processing map and the softening mechanism were determined to be a deformation temperature range from 1100 to 1200°C and a strain-rate range from 0.001 to 0.08 s^(-1), with a power dissipation efficiency η greater than 31%.
基金funding support from National Natural Science Foundation of China(Grant No.41831278).
文摘For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of interface mechanics for composite materials,the interface stresses of the vertical and horizontal joints,which are the two primary joints in the CJRM under triaxial compression,are studied,and their mathematical expressions are derived based on the superposition principle.Based on the obtained interface stresses of the vertical and horizontal joints in the CJRM,the crack initiation of the joint interface in the CJRM is studied using the maximum circumferential stress theory in fracture mechanics.Moreover,based on this investigation,the fracture behaviors of CJRM are analyzed.According to the results of similar material physical model tests for the CJRM,the theoretical study is verified.Finally,the influence of the mechanical parameters of the CJRM on the joint interface stress is discussed comprehensively.
基金financially supported by the National Natural Science Foundation of China (Nos. 51574027 and 51604206)the Financial Support from the State Key Laboratory for Advanced Metals and Materials (No. 2016Z-22)
文摘The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with aging-temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ ·mol1. Finally, a columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with both excellent superelasticity(5%-9%) and high martensitic transformation critical stress(443-677 MPa) is obtained through the application of the appropriate aging treatments.