Yihui1577 was bred after over 10 generations by crossing R16 and Yunan purple rice. Many new hybrid rice varieties have been bred with Yihui1577, of which Gangyou1577. Ilyou1577, Nyou1577 and Yixiang1577 were certifie...Yihui1577 was bred after over 10 generations by crossing R16 and Yunan purple rice. Many new hybrid rice varieties have been bred with Yihui1577, of which Gangyou1577. Ilyou1577, Nyou1577 and Yixiang1577 were certified by Sichuan Crop Variety Release Committee, Gangyou1577 and Yixiang1577 were certified by National Crop Variety Release Committee. The series varieties bred with Yihui1577 have been used widely with accumulated area of 1,200,000 ha. By using Yihui1577 as breeding material, an excellent restore line Yihui3003 and some other restore lines, such as Yihui1979 and Yihui315 with good quality and combination ability have been bred. Analysis of combination ability and stability of restore line Yihui1577 was made by using agricultural experimentation and statistical approach. The combination ability analysis was made by not complete dual crossing method with 4 CMS lines and 6 restorer lines. It shows that the general combination ability effect value of Yihui1577 is 0.226, while Minghui63 is -0.113. So the general combination ability of Yihui1577 is prior to that of Minghui63. Stability analysis shows that the F value of Gangyou1577 is 1.81378, while Sanyou63 is 1.40327, both doesn't reach significant level. So Gangyou1577 has the same stability as Sanyou63.The same conclusion is got in the stability analysis of the breeds of II you 1577, Yixiang1577, Nyou 1577 and so on.展开更多
Yihui1577 was bred after over 10 generations by crossing RI6 and Yunnan purple rice. Many new hybrid rice varieties had been bred with Yihui 1577, of which Gangyou 1577, Ⅱ you1577, Nyou 1577 and Yixiang1577 were cert...Yihui1577 was bred after over 10 generations by crossing RI6 and Yunnan purple rice. Many new hybrid rice varieties had been bred with Yihui 1577, of which Gangyou 1577, Ⅱ you1577, Nyou 1577 and Yixiang1577 were certified by Sichuan Province Crop Variety Release Committee, Gangyou1577 and Yixiang1577 were certified by National Crop Variety Release Committee. The series varieties bred with Yihui1577 had been used widely with accumulated areas of 1 200 000 hm2. By using Yihui1577 as breeding material, an excellent restore line Yihui 3003 and some other restore lines, such as Yihui 1979, Yihui 315 with good rice quality and good combination ability had been bred. Analysis of combination ability and stability about restore line Yihui 1577 was made by using agricultural experimentation and statistical approach. The combination ability analysis was made in complete dual crossing method with 4 CMS lines and 6 restorer lines. It showed that the general combination ability effect value of Yihui1577 was 0.226, while Minghui63 was -0.113. So the general combination ability ofYihui1577 was prior to that of Minghui 63. Stability analysis showed that the F value of Gangyou1577 was 1.81378, while Sanyou 63 was 1.40327, both didn't reach significant level. So Gangyou1577 had the same stability as Sanyou 63. The same conclusion had got in the stability analysis of the breeds of Ⅱ you 1577, Yixiang 1577, Nyou 1577 and so on.展开更多
Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivati...Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivation of enhanced hybrid plants with desired traits,such as high yield and fine fiber quality.In this study,the general combining ability(GCA)and specific combining ability(SCA)of yield and fiber quality of nine cotton parents(six lines and three testers)and eighteen F1 crosses produced using a line×tester mating design were analyzed.Results The results revealed significant effects of genotypes,parents,crosses,and interactions between parents and crosses for most of the studied traits.Moreover,the effects of both additive and non-additive gene actions played a notably significant role in the inheritance of most of the yield and fiber quality attributes.The F1 hybrids of(Giza 90×Aust)×Giza 86,Uzbekistan 1×Giza 97,and Giza 96×Giza 97 demonstrated superior performance due to their favorable integration of high yield attributes and premium fiber quality characteristics.Path analysis revealed that lint yield has the highest positive direct effect on seed cotton yield,while lint percentage showed the highest negative direct effect on seed cotton yield.Principal component analysis identified specific parents and hybrids associated with higher cotton yield,fiber quality,and other agronomic traits.Conclusion This study provides insights into identifying potential single-and three-way cross hybrids with superior cotton yield and fiber quality characteristics,laying a foundation for future research on improving fiber quality in cotton.展开更多
Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hy...Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hybrids.Fifty cotton genotypes and 40 F1(hybrids)were tested under field conditions following the treatments,viz.,high temperature stress and control at peak flowering stage in August and October under April and June sowing,respectively.Results The mean squares revealed significant differences among genotypes,treatments,genotype×treatment for relative cell injury,chlorophyll contents,canopy temperature,boll retention and seed cotton yield per plant.The genetic diversity among 50 genotypes was analyzed through cluster analysis and heat susceptibility index(HSI).The heat tolerant genotypes including FH-Noor,NIAB-545,FH-466,FH-Lalazar,FH-458,NIAB-878,IR-NIBGE-8,Weal-AGShahkar,and heat sensitive,i.e.,CIM-602,Silky-3,FH-326,SLH-12 and FH-442 were hybridized in line×tester fashion to produce F1 populations.The breeding materials’populations(40 F1)revealed higher specific combining ability variances along with dominance variances,decided the non-additive type gene action for all the traits.The best general combining ability effects for most of the traits were displayed by the lines,i.e.,FH-Lalazar,NIAB-878 along with testers FH-326 and Silky-3.Specific combining ability effects and better-parent heterosis were showed by the crosses,viz.,FH-Lalazar×Silky-3,FH-Lalazar×FH-326,NIAB-878×Silky-3,and NIAB-878×FH-326 for seed cotton yield and yield contributing traits under high temperature stress.Conclusion Heterosis breeding should be carried out in the presence of non-additive type gene action for all the studied traits.The best combiner parents with better-parent heterosis may be used in crossing program to develop high yielding cultivars,and hybrids for high temperature stress tolerance.展开更多
[Objectives] The paper was to screen resistant sugarcane varieties against brown stripe disease,and to breed disease-resistant germplasm resource.[Methods]The combining ability for resistance to sugarcane brown stripe...[Objectives] The paper was to screen resistant sugarcane varieties against brown stripe disease,and to breed disease-resistant germplasm resource.[Methods]The combining ability for resistance to sugarcane brown stripe disease was analyzed based on 23 female parents,21 male parents and 29 cross combinations. [Results]The average heritability of resistance to sugarcane brown stripe disease successively were female parents( 95. 3%),cross combinations( 93. 0%)and male parents( 79. 1%). The general combining ability of 12 female parents showed negative effect,including Pma 98-40,Yacheng 93-26,Yunrui 05-283,Yuetang 91-976,Chuanzhe 19,ROC10,Yunzhe 06-80,ROC26,Zhanzhe 74-141,K86-110,Yunzhe 03-194 and ROC25. The general combining ability of 10 male parents showed negative effect,including Q 199,Yunrui 06-649,Yunrui 05-733,CP 84-1198,CP 88-1762,Yacheng 84-125,Yunrui 05-784,Yuetang 00-236,CP72-3591 and CP 94-110. The special combining ability of 16 cross combinations showed negative effect,including Pma 98-40 × Yunrui 05-649,Yacheng 93-26 ×Yunrui 05-733,Yunrui 05-283 × Q199,Yuetang 91-976 × CP 84-1198,Chuanzhe 19 × CP 88-1762 and ROC10 × Yuenong 73-204. [Conclusions] There were significant differences in combining ability among female parents,male parents and cross combinations,which were mainly controlled by additive and non-additive gene.展开更多
Background For the purpose of utilising hybrid vigour to produce possible hybrids with a suitable level of stability,the knowledge of gene activity and combining ability is a crucial prerequisite before choosing desir...Background For the purpose of utilising hybrid vigour to produce possible hybrids with a suitable level of stability,the knowledge of gene activity and combining ability is a crucial prerequisite before choosing desirable parents.The present study was carried out with six parents crossed in full diallel fashion and generated 30 F1 hybrids.These hybrids were evaluated in two replications in Randomized Block Design at Department of Cotton,TNAU for combining ability and gene action.Diallel analysis was carried out according to Griffing’s method-I(parents + F_(1) + reciprocals) and model-I and Hayman’s graphical approach by using INDOSTAT software.Results Analysis of variance for combining ability indicated that mean square values of GCA,SCA and reciprocals were highly significant for all the traits except for the uniformity index.RG763 and K12 showed highly positively significant GCA effects for most of the yield traits while PA838 and K12 for fibre quality traits,so they were found as best general combiners.PAIG379 × K12 and PDB29 × K12 for yield traits,and PDB29 × PA838,RG763 × PA838,and CNA1007 × RG763 cross combinations for fibre quality traits could be recommended for future breeding programms.Conclusion The results of both Griffing’s and Hayman’s approaches showed that non-additive gene action predominates as SCA variance was bigger than GCA variance,so heterosis breeding is thought to be a more fruitful option for enhancing GCA of many traits.展开更多
45A is a glutinous sorghum male sterile line with high starch and high combining ability bred by Rice and Sorghum Institute of Sichuan Academy of Agricultural Sciences in 1998, it is a coeno-species taking non-glutino...45A is a glutinous sorghum male sterile line with high starch and high combining ability bred by Rice and Sorghum Institute of Sichuan Academy of Agricultural Sciences in 1998, it is a coeno-species taking non-glutinous maintainer line TL169-239B which bred by Tieling Institute of Agricultural Sciences in 1991 as the female parent and glutinous maintainer line72B bred by the authors' institute as the male parent, then, based on the backcross breeding between glutinous single plant chosen from F2 segregation population and Tx623A. There are ten hybrid sorghum varieties which already have been examined and approved by national and above provincial(municipal) level units; the patent of this breeding method has been authorized (the patent number: ZL 2012 1 0129155.6); 45A is protected by the Right of New Varieties of Plants, MOA, P.R. China (the variety right number: CNA20090576.1). In this paper, the breeding process of 45A and the characteristics of 45A sterile line and its hybrid sorghum were summed up, what's more, the technical key points of high-yielding breed of 45A and the production of hybrid sorghum seeds were introduced, to provide data for further popularizing the sterile line.展开更多
Using 3 sterile lines and 12 restorer of glutinous sorghum as experimental materials,36 hybrid combinations(3×12 NCⅡ) were designed to analyze the combining ability and heritability of six main agronomic trait...Using 3 sterile lines and 12 restorer of glutinous sorghum as experimental materials,36 hybrid combinations(3×12 NCⅡ) were designed to analyze the combining ability and heritability of six main agronomic traits,including plant height,panicle length,growth period,1 000-grain weight,per panicle grains and per panicle grain weight.The results showed that except per panicle grain number all other five agronomic traits have remarkable or extremely remarkable general combining ability and specific combining ability.Six agronomic traits were found to be control by additive genetic effect.Most of these agronomic traits are more easily influenced by restorers than sterile lines,suggesting that more attention should be paid to select restores in hybrid glutinous sorghum breeding.The narrow-sense heritability of these agronomic traits were in order growth period plant height per panicle grain weight panicle length 1 000-grain weight per panicle grains.展开更多
Five cytoplasmic male sterile (CMS) lines were used as parents in an incomplete diallet cross and six restorer lines of rice design (Nc II design). Thirty hybrid combinations with the same growth period were selec...Five cytoplasmic male sterile (CMS) lines were used as parents in an incomplete diallet cross and six restorer lines of rice design (Nc II design). Thirty hybrid combinations with the same growth period were selected as experimental ma- terials to investigate the heterosis, combined ability and heredity of Cd content in brown rice of indica hybrid rice. According to the results, Cd content in brown rice showed a significantly negative heterosis; the general combining ability and specific combination ability of Cd content in CMS and restorer lines both reached extremely significant level (P〈0.01), indicating that both genetic improvement of parents and e- valuation of combinations are important to the breeding of hybrid combinations with low accumulation of Cd; the broad-sense heritabitity and narrow-sense heritability of Cd content were both relatively high with slight differences, which respectively reached 97.73% and 80.10%, indicating that Cd content in brown rice mainly de- pends on the additive action of genes; in addition, parent improvement showed bet- ter effect on the selection of early generation.展开更多
Despite hybrid dominance contributing to the genetic improvement of crops,little is known about heterosis and inheritance patterns of endogenous substances in sorghum(Sorghum bicolor(L.)Moench)root bleeding sap.In thi...Despite hybrid dominance contributing to the genetic improvement of crops,little is known about heterosis and inheritance patterns of endogenous substances in sorghum(Sorghum bicolor(L.)Moench)root bleeding sap.In this study,six sterile and six restorer lines of sorghum and 36 hybrid sorghum combinations formulated as incomplete double-row crosses were selected as test materials,and heterosis,combining ability,heritability,and their interrelationships of root bleeding sap endogenous substances in different hybrid sorghum combinations and their parents were investigated.The results showed that the root bleeding sap of the F1 generation of hybrid sorghum had a high heterosis in both soluble sugar content and amino acid content at the flowering stage,and the average high-parent heterosis was 129.34%and 74.57%,respectively.Indole-3-acetic acid(IAA),cytokinins(CTK),gibberellic acid(GA_(3)),abscisic acid(ABA),soluble sugar,amino acid,and root bleeding intensity were mainly affected by non-additive genetic effects of the genes.Soluble protein was affected by additive genetic effects of the genes and had a high narrow heritability(75.50%),which could be selected at low generations in breeding.The combining ability analyses showed that the sterile lines 521A and 170A,and the restorer lines Ji318R and 0–30 were promising parents with high general combining ability.Correlation analysis showed that all endogenous substances of root bleeding sap were positively correlated with the sum of parental general combining ability(GCA)at highly significant levels,and IAA,CTK,GA_(3),ABA,soluble sugar,amino acid,and root bleeding intensity were positively correlated with male GCA at significant or highly significant levels.Therefore,the GCA of the restorer lines root bleeding sap endogenous material or the sum of both parents’GCA can be used to predict the performance of wounding endogenous material in the F1 generation of hybrid sorghum.Overall,this study results can help elucidate heterosis mechanisms of root bleeding sap endogenous material and improve sorghum quality.展开更多
The combining ability and correlation of eight ear characteristics in 99 maize hybrids generated by crossing nine female parents with 11 male parents were analyzed by incomplete diallel cross (NC II ) design. The re...The combining ability and correlation of eight ear characteristics in 99 maize hybrids generated by crossing nine female parents with 11 male parents were analyzed by incomplete diallel cross (NC II ) design. The results showed that the line F6 had the highest general combining ability (GCA) for yield, followed by F7, M3, M4 and M8. All of the five lines have great potential in maize breeding. The cross combination M3xF10 had the highest specific combining ability (SCA) for yield, showing strong heterosis. Heritability analysis of ear characteristics showed that GCA variance was higher than SCA variance in ear diameter, number of rows per ear and seed rate, and they were mainly controlled by the additive gene effect, indicating that that the selections for these traits are effective at early generations. The other three traits had lower SCA, for which the selections should be carried out at late generations. The correlation analysis revealed that ear length, number of grains per row, ear diameter, number of rows per ear, 100-seed weight and seed rate had extremely significant positive correlations with grain yield per plant. Among them, number of grains per row had the most significant effect on yield per plant. Barren tip length had a significant negative correlation with grain yield per plant. Therefore, we concluded that the combinations with more grains per row and shorter barren tip should be selected to achieve high yield of maize.展开更多
The general combining ability(GCA), special combining ability(SCA) and genetic parameter of ten characters of 22 maize inbred lines including plant height and ear height were analyzed using 10×12 through inco...The general combining ability(GCA), special combining ability(SCA) and genetic parameter of ten characters of 22 maize inbred lines including plant height and ear height were analyzed using 10×12 through incomplete diallel cross(NC Ⅱ).The results showed that:(1) Among the 22 maize inbred lines, the yield GCAs of11 HN 097, 11 HN 099, 11 HN 105 and 11 HN 110 were high, which were elite inbred lines to collocate hybridized combinations with strong heterosis. The yield of11 HN110 × 11 HN097, 11 HN110 × 11 HN105, 11 HN112 × 11 HN 097 and 11 HN 106 × 11 HN 104 were in the first four place. The yielding abilities, adaptabilities and yielding stabilities of the four combinations can be further identified by experiment. The heredities of the ten characters were mainly controlled by additive gene effect whereas the influence of non-addictive gene effect was small. The narrow heritabilities of plant height, ear height, ear rows, ear length, kernels per row,100-grain weight and seed-producing percentage were more than 50%. The variances were mainly caused by heredity and early-generation selection should be conducted. The narrow heritabilities of ear diameter, bare tip length and yield was low, which should not be selected in early-generation.展开更多
Fifteen combinations crossed by five JA cytoplasmic male sterile lines (A1, A2, A3, A4, A5) and three restoring lines (R1, R2, R3) were selected to analyze the combining ability and heritability of nine main agron...Fifteen combinations crossed by five JA cytoplasmic male sterile lines (A1, A2, A3, A4, A5) and three restoring lines (R1, R2, R3) were selected to analyze the combining ability and heritability of nine main agronomic characters of Brassica na-pus L. to definite the application potential of these parent materials. The result showed that (i) the general combining ability (GCA) of male parents was R3>R2>R1 and that of female parents was A4>A1>A2>A5>A3; (i ) the special combining ability (SCA) of A2×R3 in plant height, number of branches, number of pods per plant and yield per plant was the best. The yield per plant of A2×R3, A1×R1 and A2×R1 ranked the first three places in the 15 combinations; (i i) the broad heritability of yield per plant was the highest, and that of the height of branches was the lowest. The com-prehensive characters of R3, A2 and A4 were better, which could be used to create new materials; (iv) good offspring were more likely to be chosen from the combina-tion with higher parental GCA, so the GCA and SCA should be considered com-prehensively when choosing parent and determining the optimal combinations.展开更多
A population of 140 recombinant inbred lines at F8 generation were obtained after seven successive generations of self-pollination using single seed descent(SSD) method from the F2 hybrids of three-line restorers Lu...A population of 140 recombinant inbred lines at F8 generation were obtained after seven successive generations of self-pollination using single seed descent(SSD) method from the F2 hybrids of three-line restorers Luhui 8258 with high combining ability and Yanghui 34. Then, the 140 inbred lines obtained above and their parents Luhui 8258 and Yanghui 34 were crossed with three different types of cyto-plasmic male sterile(CMS) lines(Gang 46 A, Ⅱ-32 A and Lu 98A) according to NCⅡ design. The resulting 426 combinations were planted at Deyang and Suining bases to test the combining ability and inheritance of five yield traits: yield per plant, panicle number per plant, filled grain number per panicle, seed setting rate and 1 000-grain weight. The results showed that the variances of both general and specific combining abilities of the five traits all reached a significant or extremely significant level at the two sites. The broad and narrow heritability of the yield traits(except 1 000-grain weight whose broad and narrow heritability were both over70%) were all below 50% at the two experimental bases, suggesting that the four traits were easily subjected to environment influence. Very significant positive correlation of general combining ability was found between yield per plant and other traits except 1 000-grain weight. The general combining ability variance showed a normal distribution among the recombinant inbred lines at two sites, right in line with inheritance of quantitative traits. So, the genes controlling rice general combining ability can be targeted by QTL mapping.展开更多
In this study, six CIMMYT maize inbred lines and five representative do- mestic maize inbred lines were used as parental lines. By using incomplete diallel cross design, 30 hybrid combinations were developed to analyz...In this study, six CIMMYT maize inbred lines and five representative do- mestic maize inbred lines were used as parental lines. By using incomplete diallel cross design, 30 hybrid combinations were developed to analyze the general com- bining ability (GCA), specific combining ability (SCA) and total combining ability (TCA) of seven panicle traits in six CIMMYT maize inbred lines. The results showed that CIMBL98 and GEMS13 were excellent inbred lines with good compre- hensive performance; CIMBL98 × 340 and GEMS13×Chang 7-2 were superior combinations.展开更多
By using complete-diallel cross design(Griffing method I), the influence of the combination of different high-yield genotypes of maize on the drought tolerance of their offspring, the general combining ability, the ...By using complete-diallel cross design(Griffing method I), the influence of the combination of different high-yield genotypes of maize on the drought tolerance of their offspring, the general combining ability, the specific combining ability and the back cross effect of drought tolerance between parents and the main genetic parameters for drought tolerance were analyzed. The result indicated that there were significant differences in general combining ability effects(GCA) of maize; there were highly significant differences in special combining ability effects(SCA); there was no significant difference in reciprocal effects(R). There were apparent differences in drought tolerance among six parents; to be specific, Zheng 58 had the highest drought tolerance, while PH4CV had the lowest. Improving drought-tolerant parents with Zheng 58, Ji 853 and Xinzi 8717 had gain superiority effects on the increase of drought tolerance in offspring. The influence of the genetic additive effect on the drought tolerance of offsprings varied with different parents and combinations. Therefore, the expression of drought tolerance inheritance genes was determined only by the additive and non-additive genetic effects but had little relationship with reciprocal effects. The selection of drought tolerance of maize should be conducted at higher generations.展开更多
We conducted a complete diallel cross among three geographically isolated populations of Pacific abalone Haliotis discus hannai Ino to determine the heterosis and the combining ability of growth traits at the spat sta...We conducted a complete diallel cross among three geographically isolated populations of Pacific abalone Haliotis discus hannai Ino to determine the heterosis and the combining ability of growth traits at the spat stage.The three populations were collected from Qingdao(Q) and Dalian(D) in China,and Miyagi(M) in Japan.We measured the shell length,shell width,and total weight.The magnitude of the general combining ability(GCA) variance was more pronounced than the specific combining ability(SCA) variance,which is evidenced by both the ratio of the genetic component in total variation and the GCA/SCA values.The component variances of GCA and SCA were significant for all three traits(P<0.05),indicating the importance of additive and non-additive genetic effects in determining the expression of these traits.The reciprocal maternal effects(RE) were also significant for these traits(P<0.05).Our results suggest that population D was the best general combiner in breeding programs to improve growth traits.The DM cross had the highest heterosis values for all three traits.展开更多
The wheatgrass, Thinopyrum intermedium (Host) Barkworth & DR Dewey, shows many beneficial characteristics, such as big spikes and high resistance to many diseases. To transfer the beneficial genes of this species, ...The wheatgrass, Thinopyrum intermedium (Host) Barkworth & DR Dewey, shows many beneficial characteristics, such as big spikes and high resistance to many diseases. To transfer the beneficial genes of this species, many wheat- Thinopyrum intermedium alien chromosome lines were developed. Of them, Shannong 0095 (SN0095), a disomic substitution, has long spikes and flag-leaves, and thus may be an important genetic resource for wheat yield improvement. In order to realize its heterosis and combining ability on major yield traits, a 7 ×7 complete diallel design was made according to Griffing's Method-1. The results showed that heterosis for spike length (SPL), flag-leaf area (FLA), number of spikes per plant (NSP), number of spikelets per spike (NSL), kernels per spike (KPS), 1 000-kernel weight (TKW) and grain yield per plant (GYP) existed in all the crosses by SN0095, but heterobeltiosis occurred only for KPS, TKW, and GYP. The relative mid-parent heterosis (RMH) and relative high-parent heterosis (RHH) for GYP, which valued as high as 35.32 and 29.92% respectively, were the highest among all the traits mearsured. Though additive and non-additive gene effects and cytoplasmic effects (or cytoplasmic-nuclear interaction effects) were found in governing all the traits measured above, additive gene action played a predominant role. The results also showed that SN0095 was the best-general combiner for SPL and FLA, and high-general combiner for NSP amongst all the parents. Estimates of specific combining ability (SCA) showed that SN0095 could also make high-SCA combinations for GYP, such as SN0095 × Jimai 19 (JMI9). SN0095 could be a unique and important parent in hybrid wheat breeding programs.展开更多
Cross combinations from six rapeseed cultivars and lines were evaluated under waterlogging stress condition in order to understand the genetic mechanism of waterlogging tolerance of Brassica napus L.and provide reason...Cross combinations from six rapeseed cultivars and lines were evaluated under waterlogging stress condition in order to understand the genetic mechanism of waterlogging tolerance of Brassica napus L.and provide reasonable improvement programs.There were six germination traits investigated on combining ability and heritability using complete diallel crossing method designed for 30 combinations from those six cultivars and lines.The traits included relative root length,stem length,fresh weight per plant,survival rate,electrical conductivity,and vigor index.After flooding treatment,the six traits of parents and F1 were analyzed.The general combining ability(GCA) and special combining ability(SCA) of germination traits were analyzed using Griffing I method.Among 30 cross combinations,the GCA was significantly different among six waterlogging resistance traits.The SCA of these traits was significantly different except the SCA of electrical conductivity.As a representative trait of waterlogging tolerance in rapeseed,relative vigor index had the highest narrow heritability and relatively low broad heritability.The cultivars Zhongshuang 9 and P79 had higher tolerance potential to waterlogging stress.It can be concluded that combining ability and genetic effects of relative vigor index during germination stage could be used to identify the waterlogging tolerance of rapeseed in breeding program.展开更多
Since the combining ability was proposed in 1942, efforts to uncover the genetic basis underlying this phenomenon have been ongoing for nearly 70 yr, with little success. Some breeding strategies based on evaluation o...Since the combining ability was proposed in 1942, efforts to uncover the genetic basis underlying this phenomenon have been ongoing for nearly 70 yr, with little success. Some breeding strategies based on evaluation of combining ability have been produced, and are still extensively used in hybrid breeding. In this review, the genetic basis underlying these breeding strategies is discussed, and a potential genetic control of general combining ability (GCA) is postulated. We suggested that GCA and the yields of inbred lines might be genetically controlled by different sets of loci on the maize genome that are transmitted into offspring. Different inbred lines might possess different favorable alleles for GCA. In hybrids, loci involved in multiple pathways, which are directly or indirectly associated with yield performance, might be regulated by GCA loci. In addition, a case of GCA mapping using a set of testcross progeny from introgression lines is provided.展开更多
基金The study is approved by the state 863 program in China (the program No.2002AA2070002)and Sichuan province 15 rice breeding key project.
文摘Yihui1577 was bred after over 10 generations by crossing R16 and Yunan purple rice. Many new hybrid rice varieties have been bred with Yihui1577, of which Gangyou1577. Ilyou1577, Nyou1577 and Yixiang1577 were certified by Sichuan Crop Variety Release Committee, Gangyou1577 and Yixiang1577 were certified by National Crop Variety Release Committee. The series varieties bred with Yihui1577 have been used widely with accumulated area of 1,200,000 ha. By using Yihui1577 as breeding material, an excellent restore line Yihui3003 and some other restore lines, such as Yihui1979 and Yihui315 with good quality and combination ability have been bred. Analysis of combination ability and stability of restore line Yihui1577 was made by using agricultural experimentation and statistical approach. The combination ability analysis was made by not complete dual crossing method with 4 CMS lines and 6 restorer lines. It shows that the general combination ability effect value of Yihui1577 is 0.226, while Minghui63 is -0.113. So the general combination ability of Yihui1577 is prior to that of Minghui63. Stability analysis shows that the F value of Gangyou1577 is 1.81378, while Sanyou63 is 1.40327, both doesn't reach significant level. So Gangyou1577 has the same stability as Sanyou63.The same conclusion is got in the stability analysis of the breeds of II you 1577, Yixiang1577, Nyou 1577 and so on.
基金Supported by the State 863 Program in China(2002AA2070002)Sichuan Province 15 Rice Breeding Key Project
文摘Yihui1577 was bred after over 10 generations by crossing RI6 and Yunnan purple rice. Many new hybrid rice varieties had been bred with Yihui 1577, of which Gangyou 1577, Ⅱ you1577, Nyou 1577 and Yixiang1577 were certified by Sichuan Province Crop Variety Release Committee, Gangyou1577 and Yixiang1577 were certified by National Crop Variety Release Committee. The series varieties bred with Yihui1577 had been used widely with accumulated areas of 1 200 000 hm2. By using Yihui1577 as breeding material, an excellent restore line Yihui 3003 and some other restore lines, such as Yihui 1979, Yihui 315 with good rice quality and good combination ability had been bred. Analysis of combination ability and stability about restore line Yihui 1577 was made by using agricultural experimentation and statistical approach. The combination ability analysis was made in complete dual crossing method with 4 CMS lines and 6 restorer lines. It showed that the general combination ability effect value of Yihui1577 was 0.226, while Minghui63 was -0.113. So the general combination ability ofYihui1577 was prior to that of Minghui 63. Stability analysis showed that the F value of Gangyou1577 was 1.81378, while Sanyou 63 was 1.40327, both didn't reach significant level. So Gangyou1577 had the same stability as Sanyou 63. The same conclusion had got in the stability analysis of the breeds of Ⅱ you 1577, Yixiang 1577, Nyou 1577 and so on.
文摘Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivation of enhanced hybrid plants with desired traits,such as high yield and fine fiber quality.In this study,the general combining ability(GCA)and specific combining ability(SCA)of yield and fiber quality of nine cotton parents(six lines and three testers)and eighteen F1 crosses produced using a line×tester mating design were analyzed.Results The results revealed significant effects of genotypes,parents,crosses,and interactions between parents and crosses for most of the studied traits.Moreover,the effects of both additive and non-additive gene actions played a notably significant role in the inheritance of most of the yield and fiber quality attributes.The F1 hybrids of(Giza 90×Aust)×Giza 86,Uzbekistan 1×Giza 97,and Giza 96×Giza 97 demonstrated superior performance due to their favorable integration of high yield attributes and premium fiber quality characteristics.Path analysis revealed that lint yield has the highest positive direct effect on seed cotton yield,while lint percentage showed the highest negative direct effect on seed cotton yield.Principal component analysis identified specific parents and hybrids associated with higher cotton yield,fiber quality,and other agronomic traits.Conclusion This study provides insights into identifying potential single-and three-way cross hybrids with superior cotton yield and fiber quality characteristics,laying a foundation for future research on improving fiber quality in cotton.
基金Higher Education Commission of Pakistan for funding the experiments
文摘Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hybrids.Fifty cotton genotypes and 40 F1(hybrids)were tested under field conditions following the treatments,viz.,high temperature stress and control at peak flowering stage in August and October under April and June sowing,respectively.Results The mean squares revealed significant differences among genotypes,treatments,genotype×treatment for relative cell injury,chlorophyll contents,canopy temperature,boll retention and seed cotton yield per plant.The genetic diversity among 50 genotypes was analyzed through cluster analysis and heat susceptibility index(HSI).The heat tolerant genotypes including FH-Noor,NIAB-545,FH-466,FH-Lalazar,FH-458,NIAB-878,IR-NIBGE-8,Weal-AGShahkar,and heat sensitive,i.e.,CIM-602,Silky-3,FH-326,SLH-12 and FH-442 were hybridized in line×tester fashion to produce F1 populations.The breeding materials’populations(40 F1)revealed higher specific combining ability variances along with dominance variances,decided the non-additive type gene action for all the traits.The best general combining ability effects for most of the traits were displayed by the lines,i.e.,FH-Lalazar,NIAB-878 along with testers FH-326 and Silky-3.Specific combining ability effects and better-parent heterosis were showed by the crosses,viz.,FH-Lalazar×Silky-3,FH-Lalazar×FH-326,NIAB-878×Silky-3,and NIAB-878×FH-326 for seed cotton yield and yield contributing traits under high temperature stress.Conclusion Heterosis breeding should be carried out in the presence of non-additive type gene action for all the studied traits.The best combiner parents with better-parent heterosis may be used in crossing program to develop high yielding cultivars,and hybrids for high temperature stress tolerance.
基金Supported by National Industrial Technology System Project(CARS-20-1-1)Project of Innovative Talents of Science and Technology in Yunnan Province(2014HC015)+1 种基金Science and Technology Plan Benefiting People in Yunnan Province(Agriculture,2014RA059)Key New Product Project of Yunnan Province(2012BB014)
文摘[Objectives] The paper was to screen resistant sugarcane varieties against brown stripe disease,and to breed disease-resistant germplasm resource.[Methods]The combining ability for resistance to sugarcane brown stripe disease was analyzed based on 23 female parents,21 male parents and 29 cross combinations. [Results]The average heritability of resistance to sugarcane brown stripe disease successively were female parents( 95. 3%),cross combinations( 93. 0%)and male parents( 79. 1%). The general combining ability of 12 female parents showed negative effect,including Pma 98-40,Yacheng 93-26,Yunrui 05-283,Yuetang 91-976,Chuanzhe 19,ROC10,Yunzhe 06-80,ROC26,Zhanzhe 74-141,K86-110,Yunzhe 03-194 and ROC25. The general combining ability of 10 male parents showed negative effect,including Q 199,Yunrui 06-649,Yunrui 05-733,CP 84-1198,CP 88-1762,Yacheng 84-125,Yunrui 05-784,Yuetang 00-236,CP72-3591 and CP 94-110. The special combining ability of 16 cross combinations showed negative effect,including Pma 98-40 × Yunrui 05-649,Yacheng 93-26 ×Yunrui 05-733,Yunrui 05-283 × Q199,Yuetang 91-976 × CP 84-1198,Chuanzhe 19 × CP 88-1762 and ROC10 × Yuenong 73-204. [Conclusions] There were significant differences in combining ability among female parents,male parents and cross combinations,which were mainly controlled by additive and non-additive gene.
文摘Background For the purpose of utilising hybrid vigour to produce possible hybrids with a suitable level of stability,the knowledge of gene activity and combining ability is a crucial prerequisite before choosing desirable parents.The present study was carried out with six parents crossed in full diallel fashion and generated 30 F1 hybrids.These hybrids were evaluated in two replications in Randomized Block Design at Department of Cotton,TNAU for combining ability and gene action.Diallel analysis was carried out according to Griffing’s method-I(parents + F_(1) + reciprocals) and model-I and Hayman’s graphical approach by using INDOSTAT software.Results Analysis of variance for combining ability indicated that mean square values of GCA,SCA and reciprocals were highly significant for all the traits except for the uniformity index.RG763 and K12 showed highly positively significant GCA effects for most of the yield traits while PA838 and K12 for fibre quality traits,so they were found as best general combiners.PAIG379 × K12 and PDB29 × K12 for yield traits,and PDB29 × PA838,RG763 × PA838,and CNA1007 × RG763 cross combinations for fibre quality traits could be recommended for future breeding programms.Conclusion The results of both Griffing’s and Hayman’s approaches showed that non-additive gene action predominates as SCA variance was bigger than GCA variance,so heterosis breeding is thought to be a more fruitful option for enhancing GCA of many traits.
文摘45A is a glutinous sorghum male sterile line with high starch and high combining ability bred by Rice and Sorghum Institute of Sichuan Academy of Agricultural Sciences in 1998, it is a coeno-species taking non-glutinous maintainer line TL169-239B which bred by Tieling Institute of Agricultural Sciences in 1991 as the female parent and glutinous maintainer line72B bred by the authors' institute as the male parent, then, based on the backcross breeding between glutinous single plant chosen from F2 segregation population and Tx623A. There are ten hybrid sorghum varieties which already have been examined and approved by national and above provincial(municipal) level units; the patent of this breeding method has been authorized (the patent number: ZL 2012 1 0129155.6); 45A is protected by the Right of New Varieties of Plants, MOA, P.R. China (the variety right number: CNA20090576.1). In this paper, the breeding process of 45A and the characteristics of 45A sterile line and its hybrid sorghum were summed up, what's more, the technical key points of high-yielding breed of 45A and the production of hybrid sorghum seeds were introduced, to provide data for further popularizing the sterile line.
基金Supported by National Sorghum Industry Technology Development System(CARS-06-01-05)Financial Genetic Breeding Program of Sichuan Province(2011JYGC11-031)+2 种基金Key R&D Program for Sorghum Breeding of Sichuan Province during the 12th Five Year PeriodScience&Technology Pillar Program in Sichuan ProvinceYouth Funds of Sichuan Academy of Agricultural Sciences(2012QNJJ-023)~~
文摘Using 3 sterile lines and 12 restorer of glutinous sorghum as experimental materials,36 hybrid combinations(3×12 NCⅡ) were designed to analyze the combining ability and heritability of six main agronomic traits,including plant height,panicle length,growth period,1 000-grain weight,per panicle grains and per panicle grain weight.The results showed that except per panicle grain number all other five agronomic traits have remarkable or extremely remarkable general combining ability and specific combining ability.Six agronomic traits were found to be control by additive genetic effect.Most of these agronomic traits are more easily influenced by restorers than sterile lines,suggesting that more attention should be paid to select restores in hybrid glutinous sorghum breeding.The narrow-sense heritability of these agronomic traits were in order growth period plant height per panicle grain weight panicle length 1 000-grain weight per panicle grains.
基金Supported by Youth Fund Project of Sichuan Academy of Agricultural Sciences(2009QNJJ015)~~
文摘Five cytoplasmic male sterile (CMS) lines were used as parents in an incomplete diallet cross and six restorer lines of rice design (Nc II design). Thirty hybrid combinations with the same growth period were selected as experimental ma- terials to investigate the heterosis, combined ability and heredity of Cd content in brown rice of indica hybrid rice. According to the results, Cd content in brown rice showed a significantly negative heterosis; the general combining ability and specific combination ability of Cd content in CMS and restorer lines both reached extremely significant level (P〈0.01), indicating that both genetic improvement of parents and e- valuation of combinations are important to the breeding of hybrid combinations with low accumulation of Cd; the broad-sense heritabitity and narrow-sense heritability of Cd content were both relatively high with slight differences, which respectively reached 97.73% and 80.10%, indicating that Cd content in brown rice mainly de- pends on the additive action of genes; in addition, parent improvement showed bet- ter effect on the selection of early generation.
基金funded by the Jilin Province Science and Technology Development Plan Project(20210202001NC)of Ziyang Zhouthe Jilin Agricultural Science and Technology Innovation Project(CXGC2021TD011)of Ziyang Zhou。
文摘Despite hybrid dominance contributing to the genetic improvement of crops,little is known about heterosis and inheritance patterns of endogenous substances in sorghum(Sorghum bicolor(L.)Moench)root bleeding sap.In this study,six sterile and six restorer lines of sorghum and 36 hybrid sorghum combinations formulated as incomplete double-row crosses were selected as test materials,and heterosis,combining ability,heritability,and their interrelationships of root bleeding sap endogenous substances in different hybrid sorghum combinations and their parents were investigated.The results showed that the root bleeding sap of the F1 generation of hybrid sorghum had a high heterosis in both soluble sugar content and amino acid content at the flowering stage,and the average high-parent heterosis was 129.34%and 74.57%,respectively.Indole-3-acetic acid(IAA),cytokinins(CTK),gibberellic acid(GA_(3)),abscisic acid(ABA),soluble sugar,amino acid,and root bleeding intensity were mainly affected by non-additive genetic effects of the genes.Soluble protein was affected by additive genetic effects of the genes and had a high narrow heritability(75.50%),which could be selected at low generations in breeding.The combining ability analyses showed that the sterile lines 521A and 170A,and the restorer lines Ji318R and 0–30 were promising parents with high general combining ability.Correlation analysis showed that all endogenous substances of root bleeding sap were positively correlated with the sum of parental general combining ability(GCA)at highly significant levels,and IAA,CTK,GA_(3),ABA,soluble sugar,amino acid,and root bleeding intensity were positively correlated with male GCA at significant or highly significant levels.Therefore,the GCA of the restorer lines root bleeding sap endogenous material or the sum of both parents’GCA can be used to predict the performance of wounding endogenous material in the F1 generation of hybrid sorghum.Overall,this study results can help elucidate heterosis mechanisms of root bleeding sap endogenous material and improve sorghum quality.
文摘The combining ability and correlation of eight ear characteristics in 99 maize hybrids generated by crossing nine female parents with 11 male parents were analyzed by incomplete diallel cross (NC II ) design. The results showed that the line F6 had the highest general combining ability (GCA) for yield, followed by F7, M3, M4 and M8. All of the five lines have great potential in maize breeding. The cross combination M3xF10 had the highest specific combining ability (SCA) for yield, showing strong heterosis. Heritability analysis of ear characteristics showed that GCA variance was higher than SCA variance in ear diameter, number of rows per ear and seed rate, and they were mainly controlled by the additive gene effect, indicating that that the selections for these traits are effective at early generations. The other three traits had lower SCA, for which the selections should be carried out at late generations. The correlation analysis revealed that ear length, number of grains per row, ear diameter, number of rows per ear, 100-seed weight and seed rate had extremely significant positive correlations with grain yield per plant. Among them, number of grains per row had the most significant effect on yield per plant. Barren tip length had a significant negative correlation with grain yield per plant. Therefore, we concluded that the combinations with more grains per row and shorter barren tip should be selected to achieve high yield of maize.
基金Supported by"Study on New Method and Technology of Maize Breeding"of the 12th Five-Year Plan in Chongqing(cstc 2012 gg C 80003)"Study on Maize DH Breeding Technology and New Variety Breeding"of the 12th Five-Year Plan of National Science and Technology Plan Project in Rural Areas(2012 AA 101203-2)+2 种基金"Basic Work of Special Agricultural Science and Technology"(cstc 2013 yykfc 80002)"National Maize Industry Technology System"(CARS-02-74)Fundamental Research Project"Genetic differences DH maize lines~~
文摘The general combining ability(GCA), special combining ability(SCA) and genetic parameter of ten characters of 22 maize inbred lines including plant height and ear height were analyzed using 10×12 through incomplete diallel cross(NC Ⅱ).The results showed that:(1) Among the 22 maize inbred lines, the yield GCAs of11 HN 097, 11 HN 099, 11 HN 105 and 11 HN 110 were high, which were elite inbred lines to collocate hybridized combinations with strong heterosis. The yield of11 HN110 × 11 HN097, 11 HN110 × 11 HN105, 11 HN112 × 11 HN 097 and 11 HN 106 × 11 HN 104 were in the first four place. The yielding abilities, adaptabilities and yielding stabilities of the four combinations can be further identified by experiment. The heredities of the ten characters were mainly controlled by additive gene effect whereas the influence of non-addictive gene effect was small. The narrow heritabilities of plant height, ear height, ear rows, ear length, kernels per row,100-grain weight and seed-producing percentage were more than 50%. The variances were mainly caused by heredity and early-generation selection should be conducted. The narrow heritabilities of ear diameter, bare tip length and yield was low, which should not be selected in early-generation.
基金Supported by the National High Technology Research and Development Program of China(863 Program,2011AA10A104)Special Funds of the Modern Agricultural Industry Technology System(CAES-13)+5 种基金National Science and Technology Support Program(2010BAD01B08,2011BAD35B04)Sichuan Breeding Key Project(2011NZ0098-5)Financial Genetic Engineering Program of Sichuan Province(2011JYGC04013)Special Funds for Sichuan Agricultural Innovation Team ConstructionOutstanding Youth AcademicTechnical Leader Training Program of Sichuan Province(2010JQ0054)~~
文摘Fifteen combinations crossed by five JA cytoplasmic male sterile lines (A1, A2, A3, A4, A5) and three restoring lines (R1, R2, R3) were selected to analyze the combining ability and heritability of nine main agronomic characters of Brassica na-pus L. to definite the application potential of these parent materials. The result showed that (i) the general combining ability (GCA) of male parents was R3&gt;R2&gt;R1 and that of female parents was A4&gt;A1&gt;A2&gt;A5&gt;A3; (i ) the special combining ability (SCA) of A2&#215;R3 in plant height, number of branches, number of pods per plant and yield per plant was the best. The yield per plant of A2&#215;R3, A1&#215;R1 and A2&#215;R1 ranked the first three places in the 15 combinations; (i i) the broad heritability of yield per plant was the highest, and that of the height of branches was the lowest. The com-prehensive characters of R3, A2 and A4 were better, which could be used to create new materials; (iv) good offspring were more likely to be chosen from the combina-tion with higher parental GCA, so the GCA and SCA should be considered com-prehensively when choosing parent and determining the optimal combinations.
基金Innovation Capacity Building Project of Supported by the Youth Fund of Innovation Capability Building Program of Sichuan Provincial Department of Finance(2014QNJJ-01)National High Technology Research and Development Program of China(2011AA10A101)Special Fund for Public Interest(Super Rice)from the Ministry of Agriculture of China(201100)~~
文摘A population of 140 recombinant inbred lines at F8 generation were obtained after seven successive generations of self-pollination using single seed descent(SSD) method from the F2 hybrids of three-line restorers Luhui 8258 with high combining ability and Yanghui 34. Then, the 140 inbred lines obtained above and their parents Luhui 8258 and Yanghui 34 were crossed with three different types of cyto-plasmic male sterile(CMS) lines(Gang 46 A, Ⅱ-32 A and Lu 98A) according to NCⅡ design. The resulting 426 combinations were planted at Deyang and Suining bases to test the combining ability and inheritance of five yield traits: yield per plant, panicle number per plant, filled grain number per panicle, seed setting rate and 1 000-grain weight. The results showed that the variances of both general and specific combining abilities of the five traits all reached a significant or extremely significant level at the two sites. The broad and narrow heritability of the yield traits(except 1 000-grain weight whose broad and narrow heritability were both over70%) were all below 50% at the two experimental bases, suggesting that the four traits were easily subjected to environment influence. Very significant positive correlation of general combining ability was found between yield per plant and other traits except 1 000-grain weight. The general combining ability variance showed a normal distribution among the recombinant inbred lines at two sites, right in line with inheritance of quantitative traits. So, the genes controlling rice general combining ability can be targeted by QTL mapping.
基金Supported by 2015 Basic Research Operating Expenses Program of Chongqing Municipality‘Excavation and Appraisal of High-Se Maize Germplasm Resources’Key Project of Development and Application of Chongqing Municipality(cstc2014yykf B80014)~~
文摘In this study, six CIMMYT maize inbred lines and five representative do- mestic maize inbred lines were used as parental lines. By using incomplete diallel cross design, 30 hybrid combinations were developed to analyze the general com- bining ability (GCA), specific combining ability (SCA) and total combining ability (TCA) of seven panicle traits in six CIMMYT maize inbred lines. The results showed that CIMBL98 and GEMS13 were excellent inbred lines with good compre- hensive performance; CIMBL98 × 340 and GEMS13×Chang 7-2 were superior combinations.
基金Supported by National Special Fund for Construction of Technical System for Maize Industry of China(CARS-02-68)Science and Technology Supporting Program of Xinjiang Uygur Autonomous Region(201191220)+1 种基金Agriculture Science and Technology Achievement Transformation Fund of Xinjiang Uygur Autonomous Region(2011GB2G400001)Science and Technology Supporting Program of Xinjiang Uygur Autonomous Region(201231104)~~
文摘By using complete-diallel cross design(Griffing method I), the influence of the combination of different high-yield genotypes of maize on the drought tolerance of their offspring, the general combining ability, the specific combining ability and the back cross effect of drought tolerance between parents and the main genetic parameters for drought tolerance were analyzed. The result indicated that there were significant differences in general combining ability effects(GCA) of maize; there were highly significant differences in special combining ability effects(SCA); there was no significant difference in reciprocal effects(R). There were apparent differences in drought tolerance among six parents; to be specific, Zheng 58 had the highest drought tolerance, while PH4CV had the lowest. Improving drought-tolerant parents with Zheng 58, Ji 853 and Xinzi 8717 had gain superiority effects on the increase of drought tolerance in offspring. The influence of the genetic additive effect on the drought tolerance of offsprings varied with different parents and combinations. Therefore, the expression of drought tolerance inheritance genes was determined only by the additive and non-additive genetic effects but had little relationship with reciprocal effects. The selection of drought tolerance of maize should be conducted at higher generations.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (No2006AA10A407)the National Natural Science Foundation of China (No30371117)
文摘We conducted a complete diallel cross among three geographically isolated populations of Pacific abalone Haliotis discus hannai Ino to determine the heterosis and the combining ability of growth traits at the spat stage.The three populations were collected from Qingdao(Q) and Dalian(D) in China,and Miyagi(M) in Japan.We measured the shell length,shell width,and total weight.The magnitude of the general combining ability(GCA) variance was more pronounced than the specific combining ability(SCA) variance,which is evidenced by both the ratio of the genetic component in total variation and the GCA/SCA values.The component variances of GCA and SCA were significant for all three traits(P<0.05),indicating the importance of additive and non-additive genetic effects in determining the expression of these traits.The reciprocal maternal effects(RE) were also significant for these traits(P<0.05).Our results suggest that population D was the best general combiner in breeding programs to improve growth traits.The DM cross had the highest heterosis values for all three traits.
基金supported by the National Natural Science Foundation of China (30571156)
文摘The wheatgrass, Thinopyrum intermedium (Host) Barkworth & DR Dewey, shows many beneficial characteristics, such as big spikes and high resistance to many diseases. To transfer the beneficial genes of this species, many wheat- Thinopyrum intermedium alien chromosome lines were developed. Of them, Shannong 0095 (SN0095), a disomic substitution, has long spikes and flag-leaves, and thus may be an important genetic resource for wheat yield improvement. In order to realize its heterosis and combining ability on major yield traits, a 7 ×7 complete diallel design was made according to Griffing's Method-1. The results showed that heterosis for spike length (SPL), flag-leaf area (FLA), number of spikes per plant (NSP), number of spikelets per spike (NSL), kernels per spike (KPS), 1 000-kernel weight (TKW) and grain yield per plant (GYP) existed in all the crosses by SN0095, but heterobeltiosis occurred only for KPS, TKW, and GYP. The relative mid-parent heterosis (RMH) and relative high-parent heterosis (RHH) for GYP, which valued as high as 35.32 and 29.92% respectively, were the highest among all the traits mearsured. Though additive and non-additive gene effects and cytoplasmic effects (or cytoplasmic-nuclear interaction effects) were found in governing all the traits measured above, additive gene action played a predominant role. The results also showed that SN0095 was the best-general combiner for SPL and FLA, and high-general combiner for NSP amongst all the parents. Estimates of specific combining ability (SCA) showed that SN0095 could also make high-SCA combinations for GYP, such as SN0095 × Jimai 19 (JMI9). SN0095 could be a unique and important parent in hybrid wheat breeding programs.
基金supported by the National High-Tech Research and Development Program of China (863 Program,2006AA10Z1C2)the Key Technologies R&D Program of China during the 10th Five-Year Plan period (2009BADA8B01,2110BAD01B09)the Natural Science Foundation of Hubei Province,China(2009CDA089)
文摘Cross combinations from six rapeseed cultivars and lines were evaluated under waterlogging stress condition in order to understand the genetic mechanism of waterlogging tolerance of Brassica napus L.and provide reasonable improvement programs.There were six germination traits investigated on combining ability and heritability using complete diallel crossing method designed for 30 combinations from those six cultivars and lines.The traits included relative root length,stem length,fresh weight per plant,survival rate,electrical conductivity,and vigor index.After flooding treatment,the six traits of parents and F1 were analyzed.The general combining ability(GCA) and special combining ability(SCA) of germination traits were analyzed using Griffing I method.Among 30 cross combinations,the GCA was significantly different among six waterlogging resistance traits.The SCA of these traits was significantly different except the SCA of electrical conductivity.As a representative trait of waterlogging tolerance in rapeseed,relative vigor index had the highest narrow heritability and relatively low broad heritability.The cultivars Zhongshuang 9 and P79 had higher tolerance potential to waterlogging stress.It can be concluded that combining ability and genetic effects of relative vigor index during germination stage could be used to identify the waterlogging tolerance of rapeseed in breeding program.
基金supported by the National Basic Research Program of China (2011CB100100)the National Natural Science Foundation of China (30971791)
文摘Since the combining ability was proposed in 1942, efforts to uncover the genetic basis underlying this phenomenon have been ongoing for nearly 70 yr, with little success. Some breeding strategies based on evaluation of combining ability have been produced, and are still extensively used in hybrid breeding. In this review, the genetic basis underlying these breeding strategies is discussed, and a potential genetic control of general combining ability (GCA) is postulated. We suggested that GCA and the yields of inbred lines might be genetically controlled by different sets of loci on the maize genome that are transmitted into offspring. Different inbred lines might possess different favorable alleles for GCA. In hybrids, loci involved in multiple pathways, which are directly or indirectly associated with yield performance, might be regulated by GCA loci. In addition, a case of GCA mapping using a set of testcross progeny from introgression lines is provided.