Improved all-optical OR gates are proposed, using a novel fiber nonlinearity-based technique, based on the principles of combined Brillouin gain and loss in a polarization-maintaining fiber (PMF). Switching contrast...Improved all-optical OR gates are proposed, using a novel fiber nonlinearity-based technique, based on the principles of combined Brillouin gain and loss in a polarization-maintaining fiber (PMF). Switching contrasts are simulated to be between 82.4%-83.6%, for two respective configurations, and switching time is comparable to the phonon relaxation time in stimulated Brillouin scattering (SBS).展开更多
基金The authors would like to acknowledge the financial support of NSERC Discovery Grants and the Canada Research Chair(CRC)Program
文摘Improved all-optical OR gates are proposed, using a novel fiber nonlinearity-based technique, based on the principles of combined Brillouin gain and loss in a polarization-maintaining fiber (PMF). Switching contrasts are simulated to be between 82.4%-83.6%, for two respective configurations, and switching time is comparable to the phonon relaxation time in stimulated Brillouin scattering (SBS).