Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and t...Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps.展开更多
Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to disp...Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to display the pelvic region and explain the labor process. The study involved a collaboration with hospital staff who recruited 18 primiparous and 18 multiparous mothers who were hospitalized for delivery at Facility A. The midwife explained the process of delivery using the “Delivery Animation Software”. A self-administered, anonymous questionnaire was distributed and analyzed separately for primiparous and multiparous mothers and their husbands. Results: 1) For both primiparous and multiparous couples, both mothers and their husbands gained a significantly higher level of understanding after delivery than during pregnancy. 2) The Self-Evaluation Scale for Experience of Delivery results were as follows: “I did my best for the baby even if it was painful” was selected more often for “birth coping skills”;“reliable medical staff” was selected more often for “physiological birth process”;“the birth progressed as I expected” was selected frequently by primiparous mothers;and “the birth progressed smoothly” was selected often by multiparous mothers. 3) In terms of husbands’ satisfaction with the delivery, “I was satisfied with the delivery”, “I was given an easy-to-understand explanation”, and “They explained the process to me” was selected of primiparous and multiparous fathers. 4) All primiparous and multiparous mothers positively evaluated whether the delivery animation was helpful in understanding the process of delivery. Conclusion: The delivery animation was effective in improving the understanding and satisfaction of both the mothers and their husbands.展开更多
FeS_(2)cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity,low cost,and environmental friendliness.However,the poor performances,induced by limited electrode-electrolyte interface...FeS_(2)cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity,low cost,and environmental friendliness.However,the poor performances,induced by limited electrode-electrolyte interface,severe volume expansion,and polysulfide shuttle,hinder the application of FeS_(2)in all-solid-state lithium batteries.Herein,an integrated 3D FeS_(2)electrode with full infiltration of Li6PS5Cl sulfide electrolytes is designed to address these challenges.Such a 3D integrated design not only achieves intimate and maximized interfacial contact between electrode and sulfide electrolytes,but also effectively buffers the inner volume change of FeS_(2)and completely eliminates the polysulfide shuttle through direct solid-solid conversion of Li2S/S.Besides,the vertical 3D arrays guarantee direct electron transport channels and horizontally shortened ion diffusion paths,endowing the integrated electrode with a remarkably reduced interfacial impedance and enhanced reaction kinetics.Benefiting from these synergies,the integrated all-solid-state lithium battery exhibits the largest reversible capacity(667 mAh g^(-1)),best rate performance,and highest capacity retention of 82%over 500 cycles at 0.1 C compared to both a liquid battery and non-integrated all-solid-state lithium battery.The cycling performance is among the best reported for FeS_(2)-based all-solid-state lithium batteries.This work presents an innovative synergistic strategy for designing long-cycling high-energy all-solid-state lithium batteries,which can be readily applied to other battery systems,such as lithium-sulfur batteries.展开更多
Pattern making plays a key role in the aspect of fashion design and garment production, as it serves as the transformative process that turns a simple drawing into a consistent accumulation of garments. The process of...Pattern making plays a key role in the aspect of fashion design and garment production, as it serves as the transformative process that turns a simple drawing into a consistent accumulation of garments. The process of creating conventional or manual patterns requires a significant amount of time and a specialized skill set in various areas such as grading, marker planning, and fabric utilization. This study examines the potential of 3D technology and virtual fashion designing software in optimizing the efficiency and cost-effectiveness of pattern production processes. The proposed methodology is characterized by a higher level of comprehensiveness and reliability, resulting in time efficiency and providing a diverse range of design options. The user is not expected to possess comprehensive knowledge of traditional pattern creation procedures prior to engaging in the task. The software offers a range of capabilities including draping, 3D-to-2D and 2D-to-3D unfolding, fabric drivability analysis, ease allowance calculation, add-fullness manipulation, style development, grading, and virtual garment try-on. The strategy will cause a shift in the viewpoints and methodologies of business professionals when it comes to the use of 3D fashion design software. Upon recognizing the potential time, financial, and resource-saving benefits associated with the integration of 3D technology into their design development process, individuals will be motivated to select for its utilization over conventional pattern making methods. Individuals will possess the capacity to transfer their cognitive processes and engage in introspection regarding their professional endeavors and current activities through the utilization of 3D virtual pattern-making and fashion design technologies. To enhance the efficacy and ecological sustainability of designs, designers have the potential to integrate 3D technology with virtual fashion software, thereby compliant advantages for both commercial enterprises and the environment.展开更多
Objective:To study the clinical outcomes of complete mesocolic excision(CME)for right-sided colon cancer using 3D(three-dimensional)laparoscopy compared to 2D(two-dimensional)laparoscopy.Methods:From January 2022 to D...Objective:To study the clinical outcomes of complete mesocolic excision(CME)for right-sided colon cancer using 3D(three-dimensional)laparoscopy compared to 2D(two-dimensional)laparoscopy.Methods:From January 2022 to December 2023,58 patients with right-sided colon cancer treated at the Affiliated Hospital of Hebei Engineering University were randomly divided into a 3D laparoscopy group(observation group)and a 2D laparoscopy group(control group),with 29 patients in each group.Intraoperative blood loss,postoperative time to first flatulence,length of hospital stay,and incidence of complications in both groups were recorded.Results:There was a statistically significant difference in intraoperative blood loss between the two groups(P<0.05).There was no statistically significant difference in the time to first flatulence between the groups(P>0.05).However,there was a statistically significant difference in the length of hospital stay(P<0.05)and the incidence of complications(P<0.05)between the two groups.Conclusion:3D laparoscopy for CME can reduce intraoperative blood loss,shorten hospital stay,and decrease postoperative complications,showing significant clinical advantages over traditional 2D laparoscopy.展开更多
The formation heterogeneity is considered as one of the major factors limiting the application of foam flooding.In this paper,influences of formation properties,such as permeability,permeability distribution,interlaye...The formation heterogeneity is considered as one of the major factors limiting the application of foam flooding.In this paper,influences of formation properties,such as permeability,permeability distribution,interlayer,sedimentary rhythm and 3D heterogeneity,on the mobility control capability and oil displacement efficiency of foam flooding,were systematically investigated using 2D homogeneous and 2D/3D heterogeneous models under 120°C and salinity of 20×10~4 mg/L.The flow resistance of foam was promoted as the permeability increased,which thus resulted in a considerable oil recovery behavior.In the scenario of the vertical heterogeneous formations,it was observed that the permeability of the high-permeable layer was crucial to foam mobility control,and the positive rhythm appeared favorable to improve the foam flooding performance.The additional oil recovery increased to about 40%.The interlayer was favorable for the increases in mobility reduction factor and oil recovery of foam flooding when the low permeability ratio was involved.For the 3D heterogeneous formations,foam could efficiently adjust the areal and vertical heterogeneity through mobility control and gravity segregation,and thus enhancing the oil recovery to 11%–14%.The results derived from this work may provide some insight for the field test designs of foam flooding.展开更多
Over the past 30 years,additive manufacturing(AM)has developed rapidly and has demonstrated great potential in biomedical applications.AM is a materials-oriented manufacturing technology,since the solidification mecha...Over the past 30 years,additive manufacturing(AM)has developed rapidly and has demonstrated great potential in biomedical applications.AM is a materials-oriented manufacturing technology,since the solidification mechanism,architecture resolution,post-treatment process,and functional application are based on the materials to be printed.However,3D printable materials are still quite limited for the fabrication of bioimplants.In this work.2D/3D AM materials for bioimplants are reviewed.Furthermore,inspired by Tai Chi,a simple yet novel soft/rigid hybrid 4D AM concept is advanced to develop complex and dynamic biological structures in the human body based on 4D printing hybrid ceramic precursor/ceramic materials that were previously developed by our group.With the development of multi-material printing technology,the development of bioimplants and soft/rigid hybrid biological structures with 2D/3D/4D AM materials can be anticipated.展开更多
In the present paper on the one hand we apply the central limit theorem to the solution of the sign problem of a path integral of two-interacting particles in potential and give an expression for the sign solved propa...In the present paper on the one hand we apply the central limit theorem to the solution of the sign problem of a path integral of two-interacting particles in potential and give an expression for the sign solved propagator (SSP) derived from that solution and on the other hand we perform the angular decomposition of the path integrals of the 2D and 3D Helium atoms. Finally, we combine those two results and derive the SSPs of the 2D and 3D Helium atoms.展开更多
The following algorithms are proposed and realized by MATLAB programming based on the brain MRI images:(1)The 3D surface of the brain is reconstructed using MC algorithm.(2)A rotate animation of the brain is created a...The following algorithms are proposed and realized by MATLAB programming based on the brain MRI images:(1)The 3D surface of the brain is reconstructed using MC algorithm.(2)A rotate animation of the brain is created and displayed by 3D rotate transformation and animation functions of Matlab.Result shows that the algorithm can show the brain accurately and quickly,takes up less space in memory.展开更多
The informatization of higher vocational education is the future development trend,and it is also encouraged and promoted by the Ministry of Education.This article focuses on the road and bridge major,combined with th...The informatization of higher vocational education is the future development trend,and it is also encouraged and promoted by the Ministry of Education.This article focuses on the road and bridge major,combined with the author’s experience in introducing virtual simulation and three-dimensional(3D)animation technology into relevant course teaching in recent years,discusses the application of virtual simulation and 3D animation technology in higher vocational education and promotes classroom revolution,to obtain better teaching effect.展开更多
It is a great challenge to use digital technology to inherit and reproduce Xinjiang Qiuci music and dance authentically. The thesis displays the cultural beauty of Qiuci music and dance through the change of vector im...It is a great challenge to use digital technology to inherit and reproduce Xinjiang Qiuci music and dance authentically. The thesis displays the cultural beauty of Qiuci music and dance through the change of vector images controlled by bones. The concrete methods are: first, get video images, do edge detection; then set up 2D character model based on anime studio, and build the skeleton according to the level, make key frames; finally use vector animation performance with the help of platform. Compared with Flash, this method is more flexible and natural. By setting up the skeleton libraries, it could lay the foundation for intellectualized design animation performance.展开更多
The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy ...The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy and effect can not meet the precise requirement of the inversion. Two typical models of the geological bodies were designed, and forward calculation was carried out using finite element method. The forward-modeled profiles were obtained. 1% Gaussian random error was added in the forward models and then 2D and 3D inversions using a high-density resistivity method were undertaken to realistically simulate field data and analyze the sensitivity of the 2D and 3D inversion algorithms to noise. Contrast between the 2D and 3D inversion results of least squares inversion shows that two inversion results of high-density resistivity method all can basically reflect the spatial position of an anomalous body. However, the 3D inversion can more effectively eliminate the influence of interference from Gaussian random error and better reflect the distribution of resistivity in the anomalous bodies. Overall, the 3D inversion was better than 2D inversion in terms of embodying anomalous body positions, morphology and resistivity properties.展开更多
The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we desi...The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we designed and constructed a 2D/2D/2D layered heterojunction photocatalyst with cascaded 2D coupling interfaces.Experiments using electron spin resonance spectroscopy,ultraviolet photoelectron spectroscopy,and in-situ irradiation X-ray photoelectron spectroscopy were conducted to confirm the 2D layered CdS/WO_(3) step-scheme(S-scheme)heterojunctions and CdS/MX ohmic junctions.Impressively,it was found that the strong interfacial electric fields in the S-scheme heterojunction photocatalysts could effectively promote spatially directional charge separation and transport between CdS and WO_(3) nanosheets.In addition,2D Ti_(3)C_(2) MXene nanosheets with a smaller work function and excellent metal conductivity when used as a co-catalyst could build ohmic junctions with Cd S nanosheets,thus providing a greater number of electron transfer pathways and hydrogen evolution sites.Results showed that the highest visible-light hydrogen evolution rate of the optimized MX-Cd S/WO_(3) layered multi-heterostructures could reach as high as 27.5 mmol/g/h,which was 11.0 times higher than that of pure CdS nanosheets.Notably,the apparent quantum efficiency reached 12.0% at 450 nm.It is hoped that this study offers a reliable approach for developing multifunctional photocatalysts by integrating S-scheme and ohmic-junction built-in electric fields and rationally designing a 2D/2D interface for efficient light-to-hydrogen fuel production.展开更多
Structure reconstruction of 3 D anatomy from biplanar X-ray images is a challenging topic. Traditionally, the elastic-model-based method was used to reconstruct 3 D shapes by deforming the control points on the elasti...Structure reconstruction of 3 D anatomy from biplanar X-ray images is a challenging topic. Traditionally, the elastic-model-based method was used to reconstruct 3 D shapes by deforming the control points on the elastic mesh. However, the reconstructed shape is not smooth because the limited control points are only distributed on the edge of the elastic mesh.Alternatively, statistical-model-based methods, which include shape-model-based and intensity-model-based methods, are introduced due to their smooth reconstruction. However, both suffer from limitations. With the shape-model-based method, only the boundary profile is considered, leading to the loss of valid intensity information. For the intensity-based-method, the computation speed is slow because it needs to calculate the intensity distribution in each iteration. To address these issues, we propose a new reconstruction method using X-ray images and a specimen’s CT data. Specifically, the CT data provides both the shape mesh and the intensity model of the vertebra. Intensity model is used to generate the deformation field from X-ray images, while the shape model is used to generate the patient specific model by applying the calculated deformation field.Experiments on the public synthetic dataset and clinical dataset show that the average reconstruction errors are 1.1 mm and1.2 mm, separately. The average reconstruction time is 3 minutes.展开更多
AIM To investigate the underlying molecularmechanisms of miR-451 to inhibit proliferation ofesophageal carcinoma cell line EC9706.METHODS: Assays for cell growth, apoptosis andinvasion were used to evaluate the effec...AIM To investigate the underlying molecularmechanisms of miR-451 to inhibit proliferation ofesophageal carcinoma cell line EC9706.METHODS: Assays for cell growth, apoptosis andinvasion were used to evaluate the effects of miR-451expression on EC cells. Luciferase reporter and Westernblot assays were used to test whether cyclin-dependentkinase inhibitor 2D (CDKN2D) and MAP3K1 act as majortargets of miR-451.RESULTS: The results showed that CDKN2D andMAP3K1 are direct targets of miR-451. CDKN2D andMAP3K1 overexpression reversed the effect of miR-451.MiR-451 inhibited the proliferation of EC9706 bytargeting CDKN2D and MAP3K1.CONCLUSION: These findings suggest that miR-451might be a novel prognostic biomarker and a potentialtarget for the treatment of esophageal squamous cellcarcinoma in the future.展开更多
文摘Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps.
文摘Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to display the pelvic region and explain the labor process. The study involved a collaboration with hospital staff who recruited 18 primiparous and 18 multiparous mothers who were hospitalized for delivery at Facility A. The midwife explained the process of delivery using the “Delivery Animation Software”. A self-administered, anonymous questionnaire was distributed and analyzed separately for primiparous and multiparous mothers and their husbands. Results: 1) For both primiparous and multiparous couples, both mothers and their husbands gained a significantly higher level of understanding after delivery than during pregnancy. 2) The Self-Evaluation Scale for Experience of Delivery results were as follows: “I did my best for the baby even if it was painful” was selected more often for “birth coping skills”;“reliable medical staff” was selected more often for “physiological birth process”;“the birth progressed as I expected” was selected frequently by primiparous mothers;and “the birth progressed smoothly” was selected often by multiparous mothers. 3) In terms of husbands’ satisfaction with the delivery, “I was satisfied with the delivery”, “I was given an easy-to-understand explanation”, and “They explained the process to me” was selected of primiparous and multiparous fathers. 4) All primiparous and multiparous mothers positively evaluated whether the delivery animation was helpful in understanding the process of delivery. Conclusion: The delivery animation was effective in improving the understanding and satisfaction of both the mothers and their husbands.
基金supported by the National Natural Science Foundation of China(Grant nos.52272201,52072136,52172229,52302303,and 51972257)Yanchang Petroleum-WHUT Joint Program(yc-whlg-2022ky-05)+1 种基金the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology,2022-KF-20)Fundamental Research Funds for the Central Universities(2023IVA106)for financial support
文摘FeS_(2)cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity,low cost,and environmental friendliness.However,the poor performances,induced by limited electrode-electrolyte interface,severe volume expansion,and polysulfide shuttle,hinder the application of FeS_(2)in all-solid-state lithium batteries.Herein,an integrated 3D FeS_(2)electrode with full infiltration of Li6PS5Cl sulfide electrolytes is designed to address these challenges.Such a 3D integrated design not only achieves intimate and maximized interfacial contact between electrode and sulfide electrolytes,but also effectively buffers the inner volume change of FeS_(2)and completely eliminates the polysulfide shuttle through direct solid-solid conversion of Li2S/S.Besides,the vertical 3D arrays guarantee direct electron transport channels and horizontally shortened ion diffusion paths,endowing the integrated electrode with a remarkably reduced interfacial impedance and enhanced reaction kinetics.Benefiting from these synergies,the integrated all-solid-state lithium battery exhibits the largest reversible capacity(667 mAh g^(-1)),best rate performance,and highest capacity retention of 82%over 500 cycles at 0.1 C compared to both a liquid battery and non-integrated all-solid-state lithium battery.The cycling performance is among the best reported for FeS_(2)-based all-solid-state lithium batteries.This work presents an innovative synergistic strategy for designing long-cycling high-energy all-solid-state lithium batteries,which can be readily applied to other battery systems,such as lithium-sulfur batteries.
文摘Pattern making plays a key role in the aspect of fashion design and garment production, as it serves as the transformative process that turns a simple drawing into a consistent accumulation of garments. The process of creating conventional or manual patterns requires a significant amount of time and a specialized skill set in various areas such as grading, marker planning, and fabric utilization. This study examines the potential of 3D technology and virtual fashion designing software in optimizing the efficiency and cost-effectiveness of pattern production processes. The proposed methodology is characterized by a higher level of comprehensiveness and reliability, resulting in time efficiency and providing a diverse range of design options. The user is not expected to possess comprehensive knowledge of traditional pattern creation procedures prior to engaging in the task. The software offers a range of capabilities including draping, 3D-to-2D and 2D-to-3D unfolding, fabric drivability analysis, ease allowance calculation, add-fullness manipulation, style development, grading, and virtual garment try-on. The strategy will cause a shift in the viewpoints and methodologies of business professionals when it comes to the use of 3D fashion design software. Upon recognizing the potential time, financial, and resource-saving benefits associated with the integration of 3D technology into their design development process, individuals will be motivated to select for its utilization over conventional pattern making methods. Individuals will possess the capacity to transfer their cognitive processes and engage in introspection regarding their professional endeavors and current activities through the utilization of 3D virtual pattern-making and fashion design technologies. To enhance the efficacy and ecological sustainability of designs, designers have the potential to integrate 3D technology with virtual fashion software, thereby compliant advantages for both commercial enterprises and the environment.
文摘Objective:To study the clinical outcomes of complete mesocolic excision(CME)for right-sided colon cancer using 3D(three-dimensional)laparoscopy compared to 2D(two-dimensional)laparoscopy.Methods:From January 2022 to December 2023,58 patients with right-sided colon cancer treated at the Affiliated Hospital of Hebei Engineering University were randomly divided into a 3D laparoscopy group(observation group)and a 2D laparoscopy group(control group),with 29 patients in each group.Intraoperative blood loss,postoperative time to first flatulence,length of hospital stay,and incidence of complications in both groups were recorded.Results:There was a statistically significant difference in intraoperative blood loss between the two groups(P<0.05).There was no statistically significant difference in the time to first flatulence between the groups(P>0.05).However,there was a statistically significant difference in the length of hospital stay(P<0.05)and the incidence of complications(P<0.05)between the two groups.Conclusion:3D laparoscopy for CME can reduce intraoperative blood loss,shorten hospital stay,and decrease postoperative complications,showing significant clinical advantages over traditional 2D laparoscopy.
基金financially supported by the Scientific Research Startup Foundation of Xinjiang University(No.620312377)the National Science and Technology Major Project of China(No.2016ZX05053-013)
文摘The formation heterogeneity is considered as one of the major factors limiting the application of foam flooding.In this paper,influences of formation properties,such as permeability,permeability distribution,interlayer,sedimentary rhythm and 3D heterogeneity,on the mobility control capability and oil displacement efficiency of foam flooding,were systematically investigated using 2D homogeneous and 2D/3D heterogeneous models under 120°C and salinity of 20×10~4 mg/L.The flow resistance of foam was promoted as the permeability increased,which thus resulted in a considerable oil recovery behavior.In the scenario of the vertical heterogeneous formations,it was observed that the permeability of the high-permeable layer was crucial to foam mobility control,and the positive rhythm appeared favorable to improve the foam flooding performance.The additional oil recovery increased to about 40%.The interlayer was favorable for the increases in mobility reduction factor and oil recovery of foam flooding when the low permeability ratio was involved.For the 3D heterogeneous formations,foam could efficiently adjust the areal and vertical heterogeneity through mobility control and gravity segregation,and thus enhancing the oil recovery to 11%–14%.The results derived from this work may provide some insight for the field test designs of foam flooding.
基金This work was supported by the National Key R&D Program of China(2017YFA0204403)the Major Program of the National Natural Science Foundation of China(51590892)+3 种基金the General Research Fund Research Grants Council(Hong Kong)(CityU 11209918)the Hong Kong Collaborative Research Fund Scheme(C4026-17W)the Hong Kong Theme-based Research Scheme(T13-402/17-N)the Shenzhen-Hong Kong cooperation zone for technology and innovation(HZQB-KCZYB-2020030).
文摘Over the past 30 years,additive manufacturing(AM)has developed rapidly and has demonstrated great potential in biomedical applications.AM is a materials-oriented manufacturing technology,since the solidification mechanism,architecture resolution,post-treatment process,and functional application are based on the materials to be printed.However,3D printable materials are still quite limited for the fabrication of bioimplants.In this work.2D/3D AM materials for bioimplants are reviewed.Furthermore,inspired by Tai Chi,a simple yet novel soft/rigid hybrid 4D AM concept is advanced to develop complex and dynamic biological structures in the human body based on 4D printing hybrid ceramic precursor/ceramic materials that were previously developed by our group.With the development of multi-material printing technology,the development of bioimplants and soft/rigid hybrid biological structures with 2D/3D/4D AM materials can be anticipated.
文摘In the present paper on the one hand we apply the central limit theorem to the solution of the sign problem of a path integral of two-interacting particles in potential and give an expression for the sign solved propagator (SSP) derived from that solution and on the other hand we perform the angular decomposition of the path integrals of the 2D and 3D Helium atoms. Finally, we combine those two results and derive the SSPs of the 2D and 3D Helium atoms.
文摘The following algorithms are proposed and realized by MATLAB programming based on the brain MRI images:(1)The 3D surface of the brain is reconstructed using MC algorithm.(2)A rotate animation of the brain is created and displayed by 3D rotate transformation and animation functions of Matlab.Result shows that the algorithm can show the brain accurately and quickly,takes up less space in memory.
基金2021 Chongqing Energy Vocational College Science and Technology Department Teaching Reform Project"Discussion and Practice of Teaching Reform of"Bridge and Culvert Engineering Construction Technology"Based on Road and Bridge Simulation Software"(202106)。
文摘The informatization of higher vocational education is the future development trend,and it is also encouraged and promoted by the Ministry of Education.This article focuses on the road and bridge major,combined with the author’s experience in introducing virtual simulation and three-dimensional(3D)animation technology into relevant course teaching in recent years,discusses the application of virtual simulation and 3D animation technology in higher vocational education and promotes classroom revolution,to obtain better teaching effect.
基金Supported by National Natural Science Foundation of China(61163044)Xinjiang Uygur Autonomous Xinjiang Science and Technology Projects(201191215)Philosophy and Social key Fund Project(12AZD118,12AZD120)
文摘It is a great challenge to use digital technology to inherit and reproduce Xinjiang Qiuci music and dance authentically. The thesis displays the cultural beauty of Qiuci music and dance through the change of vector images controlled by bones. The concrete methods are: first, get video images, do edge detection; then set up 2D character model based on anime studio, and build the skeleton according to the level, make key frames; finally use vector animation performance with the help of platform. Compared with Flash, this method is more flexible and natural. By setting up the skeleton libraries, it could lay the foundation for intellectualized design animation performance.
基金Projects(41074085,41374118)supported by the National Natural Science Foundation of ChinaProject(20120162110015)supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-12-0551)supported by Program for New Century Excellent Talents in University,China
文摘The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy and effect can not meet the precise requirement of the inversion. Two typical models of the geological bodies were designed, and forward calculation was carried out using finite element method. The forward-modeled profiles were obtained. 1% Gaussian random error was added in the forward models and then 2D and 3D inversions using a high-density resistivity method were undertaken to realistically simulate field data and analyze the sensitivity of the 2D and 3D inversion algorithms to noise. Contrast between the 2D and 3D inversion results of least squares inversion shows that two inversion results of high-density resistivity method all can basically reflect the spatial position of an anomalous body. However, the 3D inversion can more effectively eliminate the influence of interference from Gaussian random error and better reflect the distribution of resistivity in the anomalous bodies. Overall, the 3D inversion was better than 2D inversion in terms of embodying anomalous body positions, morphology and resistivity properties.
文摘The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we designed and constructed a 2D/2D/2D layered heterojunction photocatalyst with cascaded 2D coupling interfaces.Experiments using electron spin resonance spectroscopy,ultraviolet photoelectron spectroscopy,and in-situ irradiation X-ray photoelectron spectroscopy were conducted to confirm the 2D layered CdS/WO_(3) step-scheme(S-scheme)heterojunctions and CdS/MX ohmic junctions.Impressively,it was found that the strong interfacial electric fields in the S-scheme heterojunction photocatalysts could effectively promote spatially directional charge separation and transport between CdS and WO_(3) nanosheets.In addition,2D Ti_(3)C_(2) MXene nanosheets with a smaller work function and excellent metal conductivity when used as a co-catalyst could build ohmic junctions with Cd S nanosheets,thus providing a greater number of electron transfer pathways and hydrogen evolution sites.Results showed that the highest visible-light hydrogen evolution rate of the optimized MX-Cd S/WO_(3) layered multi-heterostructures could reach as high as 27.5 mmol/g/h,which was 11.0 times higher than that of pure CdS nanosheets.Notably,the apparent quantum efficiency reached 12.0% at 450 nm.It is hoped that this study offers a reliable approach for developing multifunctional photocatalysts by integrating S-scheme and ohmic-junction built-in electric fields and rationally designing a 2D/2D interface for efficient light-to-hydrogen fuel production.
基金supported in part by The National Key Research and Development Program of China(2018YFC2001302)the National Natural Science Foundation of China(61976209)+1 种基金CAS International Collaboration Key Project(173211KYSB20190024)Strategic Priority Research Program of CAS(XDB32040000)。
文摘Structure reconstruction of 3 D anatomy from biplanar X-ray images is a challenging topic. Traditionally, the elastic-model-based method was used to reconstruct 3 D shapes by deforming the control points on the elastic mesh. However, the reconstructed shape is not smooth because the limited control points are only distributed on the edge of the elastic mesh.Alternatively, statistical-model-based methods, which include shape-model-based and intensity-model-based methods, are introduced due to their smooth reconstruction. However, both suffer from limitations. With the shape-model-based method, only the boundary profile is considered, leading to the loss of valid intensity information. For the intensity-based-method, the computation speed is slow because it needs to calculate the intensity distribution in each iteration. To address these issues, we propose a new reconstruction method using X-ray images and a specimen’s CT data. Specifically, the CT data provides both the shape mesh and the intensity model of the vertebra. Intensity model is used to generate the deformation field from X-ray images, while the shape model is used to generate the patient specific model by applying the calculated deformation field.Experiments on the public synthetic dataset and clinical dataset show that the average reconstruction errors are 1.1 mm and1.2 mm, separately. The average reconstruction time is 3 minutes.
基金Supported by National Natural Science Foundation of China,No.81301726
文摘AIM To investigate the underlying molecularmechanisms of miR-451 to inhibit proliferation ofesophageal carcinoma cell line EC9706.METHODS: Assays for cell growth, apoptosis andinvasion were used to evaluate the effects of miR-451expression on EC cells. Luciferase reporter and Westernblot assays were used to test whether cyclin-dependentkinase inhibitor 2D (CDKN2D) and MAP3K1 act as majortargets of miR-451.RESULTS: The results showed that CDKN2D andMAP3K1 are direct targets of miR-451. CDKN2D andMAP3K1 overexpression reversed the effect of miR-451.MiR-451 inhibited the proliferation of EC9706 bytargeting CDKN2D and MAP3K1.CONCLUSION: These findings suggest that miR-451might be a novel prognostic biomarker and a potentialtarget for the treatment of esophageal squamous cellcarcinoma in the future.