This paper studies the application of renewable energy sources in wastewater treatment plants to achieve self-sustain- ability of power. The data of wastewater treatment plant in the rural city of Toukh-EGYPT are pres...This paper studies the application of renewable energy sources in wastewater treatment plants to achieve self-sustain- ability of power. The data of wastewater treatment plant in the rural city of Toukh-EGYPT are presented as a case-study. The primary objective is to provide an entirely renewable standalone power system, which satisfies lowest possible emissions with the minimum lifecycle cost. Mass balance principle is applied on the biodegradable components in the wastewater to evaluate the volume of digester gas that is produced from sludge through anaerobic digestion process. Using digester gas as a fuel lead to study combined-heat-and-power technologies, where fuel cell is selected in order to abide by the low emissions constraint. The study assessed the electrical power obtained from fuel cell and the utilization of the exhausted heat energy for additional electrical power production using a micro-turbine. After covering the major part of load demand, the use of other renewable energy sources was studied. The strength of both solar and wind energy was determined by the case-study location. Hybrid optimization model for electric renewable (HOMER) software was used to simulate the hybrid system composed of combined-heat-and-power units, wind turbines and photovoltaic systems. Simulation results gave the best system configuration and optimum size of each component beside the detailed electrical and cost analysis of the model.展开更多
Present-day conditions of the Lake Kenon ecosystem are determined by a combination of natural and anthropogenic factors. We have estimated the effects of a complex of factors on the condition of the abiotic environmen...Present-day conditions of the Lake Kenon ecosystem are determined by a combination of natural and anthropogenic factors. We have estimated the effects of a complex of factors on the condition of the abiotic environment and on specific biological components in the lake ecosystem. Change in biogenic load has caused an increase in the role of phytoplankton in the general balance of organic matter during the high-water period. Charophytes are the main dominants of bottom vegetation. Anthropogenic load has caused a decrease in both fish species and fish capacity. The lake application as a water reservoir-cooler has influenced the average annual water mineralization (from 420 mg/L to 530.0 mg/L with a maximum 654 mg/L in 1993) and fluctuations in its hydrochemical composition. The present composition of the lake is sulfate-hydrocarbonate-chloride calcium-sodic-magnesium in character. S(Y44 content is twice as much as the maximum permissible concentration in fishery waters. Water drainage from an ash disposal area to the lake has caused an increase in chemical-element concentrations including the heavy metals. Hg concentration in Perca fluviatilis muscles is 0.5 9g/g dry wt. Thus, understanding directions in the ecosystem of the water reservoir-cooler under changing hydrological conditions will let us forecast the consequences of new combined heat and power plant operation.展开更多
文摘This paper studies the application of renewable energy sources in wastewater treatment plants to achieve self-sustain- ability of power. The data of wastewater treatment plant in the rural city of Toukh-EGYPT are presented as a case-study. The primary objective is to provide an entirely renewable standalone power system, which satisfies lowest possible emissions with the minimum lifecycle cost. Mass balance principle is applied on the biodegradable components in the wastewater to evaluate the volume of digester gas that is produced from sludge through anaerobic digestion process. Using digester gas as a fuel lead to study combined-heat-and-power technologies, where fuel cell is selected in order to abide by the low emissions constraint. The study assessed the electrical power obtained from fuel cell and the utilization of the exhausted heat energy for additional electrical power production using a micro-turbine. After covering the major part of load demand, the use of other renewable energy sources was studied. The strength of both solar and wind energy was determined by the case-study location. Hybrid optimization model for electric renewable (HOMER) software was used to simulate the hybrid system composed of combined-heat-and-power units, wind turbines and photovoltaic systems. Simulation results gave the best system configuration and optimum size of each component beside the detailed electrical and cost analysis of the model.
基金Supported by the RFBR No.14-05-98013"Siberia"(2014–2016)the Project of SB of the RAS VIII.79.1.2."Dynamics of natural and natural-anthropogenic systems in the conditions of climate change and anthropogenic pressures(on the example of Transbaikalia)"(2012–2017)
文摘Present-day conditions of the Lake Kenon ecosystem are determined by a combination of natural and anthropogenic factors. We have estimated the effects of a complex of factors on the condition of the abiotic environment and on specific biological components in the lake ecosystem. Change in biogenic load has caused an increase in the role of phytoplankton in the general balance of organic matter during the high-water period. Charophytes are the main dominants of bottom vegetation. Anthropogenic load has caused a decrease in both fish species and fish capacity. The lake application as a water reservoir-cooler has influenced the average annual water mineralization (from 420 mg/L to 530.0 mg/L with a maximum 654 mg/L in 1993) and fluctuations in its hydrochemical composition. The present composition of the lake is sulfate-hydrocarbonate-chloride calcium-sodic-magnesium in character. S(Y44 content is twice as much as the maximum permissible concentration in fishery waters. Water drainage from an ash disposal area to the lake has caused an increase in chemical-element concentrations including the heavy metals. Hg concentration in Perca fluviatilis muscles is 0.5 9g/g dry wt. Thus, understanding directions in the ecosystem of the water reservoir-cooler under changing hydrological conditions will let us forecast the consequences of new combined heat and power plant operation.