In terms of 34-year monthly mean temperature series in 1946-1979,the multi-level maPPing model of neural netWork BP type was applied to calculate the system's fractual dimension Do=2'8,leading tO a three-level...In terms of 34-year monthly mean temperature series in 1946-1979,the multi-level maPPing model of neural netWork BP type was applied to calculate the system's fractual dimension Do=2'8,leading tO a three-level model of this type with ixj=3x2,k=l,and the 1980 monthly mean temperture predichon on a long-t6rm basis were prepared by steadily modifying the weighting coefficient,making for the correlation coefficient of 97% with the measurements.Furthermore,the weighhng parameter was modified for each month of 1980 by means of observations,therefore constrcuhng monthly mean temperature forecasts from January to December of the year,reaching the correlation of 99.9% with the measurements.Likewise,the resulting 1981 monthly predictions on a long-range basis with 1946-1980 corresponding records yielded the correlahon of 98% and the month-tO month forecasts of 99.4%.展开更多
The grey system theory and the artificial neural network technology were applied to predict the sewing technical condition. The representative parameters, such as needle, stitch, were selected. Prediction model was es...The grey system theory and the artificial neural network technology were applied to predict the sewing technical condition. The representative parameters, such as needle, stitch, were selected. Prediction model was established based on the different fabrics’ mechanical properties that measured by KES instrument. Grey relevant degree analysis was applied to choose the input parameters of the neural network. The result showed that prediction model has good precision. The average relative error was 4.08% for needle and 4.25% for stitch.展开更多
Viscosity is one of the important thermophysical properties of liquid aluminum alloys,which influences the characteristics of mold filling and solidification and thus the quality of castings.In this study,315 sets of ...Viscosity is one of the important thermophysical properties of liquid aluminum alloys,which influences the characteristics of mold filling and solidification and thus the quality of castings.In this study,315 sets of experimental viscosity data collected from the literatures were used to develop the viscosity prediction model.Back-propagation(BP)neural network method was adopted,with the melt temperature and mass contents of Al,Si,Fe,Cu,Mn,Mg and Zn solutes as the model input,and the viscosity value as the model output.To improve the model accuracy,the influence of different training algorithms and the number of hidden neurons was studied.The initial weight and bias values were also optimized using genetic algorithm,which considerably improve the model accuracy.The average relative error between the predicted and experimental data is less than 5%,confirming that the optimal model has high prediction accuracy and reliability.The predictions by our model for temperature-and solute content-dependent viscosity of pure Al and binary Al alloys are in very good agreement with the experimental results in the literature,indicating that the developed model has a good prediction accuracy.展开更多
According to the neural network theory, combined with the technical characteristicsof the hole-by-hole detonation technology, a BP network model on the forecast forblasting vibration parameters was built.Taking the de...According to the neural network theory, combined with the technical characteristicsof the hole-by-hole detonation technology, a BP network model on the forecast forblasting vibration parameters was built.Taking the deep hole stair demolition in a mine asan experimental object and using the raw information and the blasting vibration monitoringdata collected in the process of the hole-by-hole detonation, carried out some training andapplication work on the established BP network model through the Matlab software, andachieved good effect.Also computed the vibration parameter with the empirical formulaand the BP network model separately.After comparing with the actual value, it is discoveredthat the forecasting result by the BP network model is close to the actual value.展开更多
There are many influencing factors of fiscal revenue,and traditional forecasting methods cannot handle the feature dimensions well,which leads to serious over-fitting of the forecast results and unable to make a good ...There are many influencing factors of fiscal revenue,and traditional forecasting methods cannot handle the feature dimensions well,which leads to serious over-fitting of the forecast results and unable to make a good estimate of the true future trend.The grey neural network model fused with Lasso regression is a comprehensive prediction model that combines the grey prediction model and the BP neural network model after dimensionality reduction using Lasso.It can reduce the dimensionality of the original data,make separate predictions for each explanatory variable,and then use neural networks to make multivariate predictions,thereby making up for the shortcomings of traditional methods of insufficient prediction accuracy.In this paper,we took the financial revenue data of China’s Hunan Province from 2005 to 2019 as the object of analysis.Firstly,we used Lasso regression to reduce the dimensionality of the data.Because the grey prediction model has the excellent predictive performance for small data volumes,then we chose the grey prediction model to obtain the predicted values of all explanatory variables in 2020,2021 by using the data of 2005–2019.Finally,considering that fiscal revenue is affected by many factors,we applied the BP neural network,which has a good effect on multiple inputs,to make the final forecast of fiscal revenue.The experimental results show that the combined model has a good effect in financial revenue forecasting.展开更多
Electricity consumption forecasting is one of the most important tasks for power system workers,and plays an important role in regional power systems.Due to the difference in the trend of power load and the past in th...Electricity consumption forecasting is one of the most important tasks for power system workers,and plays an important role in regional power systems.Due to the difference in the trend of power load and the past in the new normal,the influencing factors are more diversified,which makes it more difficult to predict the current electricity consumption.In this paper,the grey system theory and BP neural network are combined to predict the annual electricity consumption in Jiangsu.According to the historical data of annual electricity consumption and the six factors affecting electricity consumption,the gray correlation analysis method is used to screen the important factors,and three factors with large correlation degree are selected as the input parameters of BP neural network.The power forecasting model uses nearly 18 years of data to train and validate the model.The results show that the gray correlation analysis and BP neural network method have higher accuracy in power consumption prediction,and the calculation is more convenient than traditional methods.展开更多
Evaluation of ecological carrying capacity is an important method of analyzing regional sustainable development, study on ecological carrying capacity is to settle the contradictions between resource and environment, ...Evaluation of ecological carrying capacity is an important method of analyzing regional sustainable development, study on ecological carrying capacity is to settle the contradictions between resource and environment, and it is a significant basis for realizing regional sustainable development. This paper, on the basis of the academician Sun Tiehang's "unification of three" for the eco-city construction, established ecological carrying capacity evaluation indexes for the traditional industrial and mining city—Huainan City; and applied GM–BP neural network coupling model for the dynamic evolution and prediction of ecological carrying capacity of Huainan City in the future decade. The results showed that ecological carrying capacity index of Huainan would be 2.13 by 2025, higher than the loadable state 1, so the ecological carrying capacity would keep in the over-loaded level, but the over-loaded degree would be lower than the current. Carrying capacity of arable land, energy and water resources contribute greatly to the improvement of ecological carrying capacity, thus it is imperative to adjust this unreasonable and unsustainable ecological consumption relationship, enhance environmental protection awareness and high-efficiency utilization of resources, and take an energy-saving and intensive development path.展开更多
Accurate shear wave velocity is very important for seismic inversion.However,few researches in the shear wave velocity in organic shale have been carried out so far.In order to analyze the structure of organic shale a...Accurate shear wave velocity is very important for seismic inversion.However,few researches in the shear wave velocity in organic shale have been carried out so far.In order to analyze the structure of organic shale and predict the shear wave velocity,the authors propose two methods based on petrophysical model and BP neural network respectively,to calculate shear wave velocity.For the method based on petrophysics model,the authors discuss the pore structure and the space taken by kerogen to construct a petrophysical model of the shale,and establish the quantitative relationship between the P-wave and S-wave velocities of shale and physical parameters such as pore aspect ratio,porosity and density.The best estimation of pore aspect ratio can be obtained by minimizing the error between the predictions and the actual measurements of the P-wave velocity.The optimal porosity aspect ratio and the shear wave velocity are predicted.For the BP neural network method that applying BP neural network to the shear wave prediction,the relationship between the physical properties of the shale and the elastic parameters is obtained by training the BP neural network,and the P-wave and S-wave velocities are predicted from the reservoir parameters based on the trained relationship.The above two methods were tested by using actual logging data of the shale reservoirs in the Jiaoshiba area of Sichuan Province.The predicted shear wave velocities of the two methods match well with the actual shear wave velocities,indicating that these two methods are effective in predicting shear wave velocity.展开更多
The HCl emission characteristics of typical municipal solid waste(MSW) components and their mixtures have been investigated in a Φ150 mm fluidized bed. Some influencing factors of HCl emission in MSW fluidized bed in...The HCl emission characteristics of typical municipal solid waste(MSW) components and their mixtures have been investigated in a Φ150 mm fluidized bed. Some influencing factors of HCl emission in MSW fluidized bed incinerator was found in this study. The HCl emission is increasing with the growth of bed temperature, while it is decreasing with the increment of oxygen concentration at furnace exit. When the weight percentage of auxiliary coal is increased, the conversion rate of Cl to HCl is increasing. The HCl emission is decreased, if the sorbent(CaO) is added during the incineration process. Based on these experimental results, a 14×6×1 three-layer BP neural networks prediction model of HCl emission in MSW/coal co-fired fluidized bed incinerator was built. The numbers of input nodes and hidden nodes were fixed on by canonical correlation analysis technique and dynamic construction method respectively. The prediction results of this model gave good agreement with the experimental results, which indicates that the model has relatively high accuracy and good generalization ability. It was found that BP neural network is an effectual method used to predict the HCl emission of MSW/coal co-fired fluidized bed incinerator.展开更多
In order to effectively predict occurrence quantity of Myzus persicae, BP neural network theory and method was used to establish prediction model for oc- currence quantity of M. persicae. Meanwhile, QPSO algorithm was...In order to effectively predict occurrence quantity of Myzus persicae, BP neural network theory and method was used to establish prediction model for oc- currence quantity of M. persicae. Meanwhile, QPSO algorithm was used to optimize connection weight and threshold value of BP neural network, so as to determine. the optimal connection weight and threshold value. The historical data of M. persica quantity in Hongta County, Yuxi City of Yunnan Province from 2003 to 2006 was adopted as training samples, and the occurrence quantities of M. persicae from 2007 to 2009 were predicted. The prediction accuracy was 99.35%, the mini- mum completion time was 30 s, the average completion time was 34.5 s, and the running times were 19. The prediction effect of the model was obviously superior to other prediction models. The experiment showed that this model was more effective and feasible, with faster convergence rate and stronger stability, and could solve the similar problems in prediction and clustering. The study provides a theoretical basis for comprehensive prevention and control against M. persicae.展开更多
In order to identify continuous B-cell epitopes effectively and to increase the success rate of experimental identification, the modified Back Propagation artificial neural network (BP neural network) was used to pred...In order to identify continuous B-cell epitopes effectively and to increase the success rate of experimental identification, the modified Back Propagation artificial neural network (BP neural network) was used to predict the continuous B-cell epitopes, and finally the predictive model for the B-cells epitopes was established. Comparing with the other predictive models, the prediction performance of this model is more excellent (AUC = 0.723). For the purpose of verifying the performance of the model, the prediction to the SWISS PROT NUMBER: P08677 was carried on, and the satisfying results were obtained.展开更多
文摘In terms of 34-year monthly mean temperature series in 1946-1979,the multi-level maPPing model of neural netWork BP type was applied to calculate the system's fractual dimension Do=2'8,leading tO a three-level model of this type with ixj=3x2,k=l,and the 1980 monthly mean temperture predichon on a long-t6rm basis were prepared by steadily modifying the weighting coefficient,making for the correlation coefficient of 97% with the measurements.Furthermore,the weighhng parameter was modified for each month of 1980 by means of observations,therefore constrcuhng monthly mean temperature forecasts from January to December of the year,reaching the correlation of 99.9% with the measurements.Likewise,the resulting 1981 monthly predictions on a long-range basis with 1946-1980 corresponding records yielded the correlahon of 98% and the month-tO month forecasts of 99.4%.
文摘The grey system theory and the artificial neural network technology were applied to predict the sewing technical condition. The representative parameters, such as needle, stitch, were selected. Prediction model was established based on the different fabrics’ mechanical properties that measured by KES instrument. Grey relevant degree analysis was applied to choose the input parameters of the neural network. The result showed that prediction model has good precision. The average relative error was 4.08% for needle and 4.25% for stitch.
基金the GM Research Foundation,China(No.GAC2094)Jiangsu Key Laboratory of Advanced Metallic Materials,China(No.BM2007204)the Fundamental Research Funds for the Central Universities,China(No.2242016K40011)。
文摘Viscosity is one of the important thermophysical properties of liquid aluminum alloys,which influences the characteristics of mold filling and solidification and thus the quality of castings.In this study,315 sets of experimental viscosity data collected from the literatures were used to develop the viscosity prediction model.Back-propagation(BP)neural network method was adopted,with the melt temperature and mass contents of Al,Si,Fe,Cu,Mn,Mg and Zn solutes as the model input,and the viscosity value as the model output.To improve the model accuracy,the influence of different training algorithms and the number of hidden neurons was studied.The initial weight and bias values were also optimized using genetic algorithm,which considerably improve the model accuracy.The average relative error between the predicted and experimental data is less than 5%,confirming that the optimal model has high prediction accuracy and reliability.The predictions by our model for temperature-and solute content-dependent viscosity of pure Al and binary Al alloys are in very good agreement with the experimental results in the literature,indicating that the developed model has a good prediction accuracy.
基金Supported by the National Natural Science Foundation of China(50778107)
文摘According to the neural network theory, combined with the technical characteristicsof the hole-by-hole detonation technology, a BP network model on the forecast forblasting vibration parameters was built.Taking the deep hole stair demolition in a mine asan experimental object and using the raw information and the blasting vibration monitoringdata collected in the process of the hole-by-hole detonation, carried out some training andapplication work on the established BP network model through the Matlab software, andachieved good effect.Also computed the vibration parameter with the empirical formulaand the BP network model separately.After comparing with the actual value, it is discoveredthat the forecasting result by the BP network model is close to the actual value.
基金This research was funded by the National Natural Science Foundation of China(No.61304208)Scientific Research Fund of Hunan Province Education Department(18C0003)+2 种基金Research project on teaching reform in colleges and universities of Hunan Province Education Department(20190147)Changsha City Science and Technology Plan Program(K1501013-11)Hunan Normal University University-Industry Cooperation.This work is implemented at the 2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data Property,Universities of Hunan Province,Open project,grant number 20181901CRP04.
文摘There are many influencing factors of fiscal revenue,and traditional forecasting methods cannot handle the feature dimensions well,which leads to serious over-fitting of the forecast results and unable to make a good estimate of the true future trend.The grey neural network model fused with Lasso regression is a comprehensive prediction model that combines the grey prediction model and the BP neural network model after dimensionality reduction using Lasso.It can reduce the dimensionality of the original data,make separate predictions for each explanatory variable,and then use neural networks to make multivariate predictions,thereby making up for the shortcomings of traditional methods of insufficient prediction accuracy.In this paper,we took the financial revenue data of China’s Hunan Province from 2005 to 2019 as the object of analysis.Firstly,we used Lasso regression to reduce the dimensionality of the data.Because the grey prediction model has the excellent predictive performance for small data volumes,then we chose the grey prediction model to obtain the predicted values of all explanatory variables in 2020,2021 by using the data of 2005–2019.Finally,considering that fiscal revenue is affected by many factors,we applied the BP neural network,which has a good effect on multiple inputs,to make the final forecast of fiscal revenue.The experimental results show that the combined model has a good effect in financial revenue forecasting.
基金This work is supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB520028)the Collaborative Innovation Center of Jiangsu Maritime Institute。
文摘Electricity consumption forecasting is one of the most important tasks for power system workers,and plays an important role in regional power systems.Due to the difference in the trend of power load and the past in the new normal,the influencing factors are more diversified,which makes it more difficult to predict the current electricity consumption.In this paper,the grey system theory and BP neural network are combined to predict the annual electricity consumption in Jiangsu.According to the historical data of annual electricity consumption and the six factors affecting electricity consumption,the gray correlation analysis method is used to screen the important factors,and three factors with large correlation degree are selected as the input parameters of BP neural network.The power forecasting model uses nearly 18 years of data to train and validate the model.The results show that the gray correlation analysis and BP neural network method have higher accuracy in power consumption prediction,and the calculation is more convenient than traditional methods.
基金Sponsored by National Natural Science Foundation of China(41101566)
文摘Evaluation of ecological carrying capacity is an important method of analyzing regional sustainable development, study on ecological carrying capacity is to settle the contradictions between resource and environment, and it is a significant basis for realizing regional sustainable development. This paper, on the basis of the academician Sun Tiehang's "unification of three" for the eco-city construction, established ecological carrying capacity evaluation indexes for the traditional industrial and mining city—Huainan City; and applied GM–BP neural network coupling model for the dynamic evolution and prediction of ecological carrying capacity of Huainan City in the future decade. The results showed that ecological carrying capacity index of Huainan would be 2.13 by 2025, higher than the loadable state 1, so the ecological carrying capacity would keep in the over-loaded level, but the over-loaded degree would be lower than the current. Carrying capacity of arable land, energy and water resources contribute greatly to the improvement of ecological carrying capacity, thus it is imperative to adjust this unreasonable and unsustainable ecological consumption relationship, enhance environmental protection awareness and high-efficiency utilization of resources, and take an energy-saving and intensive development path.
基金National Natural Science Foundation of China(No.41874125,No.41430322).
文摘Accurate shear wave velocity is very important for seismic inversion.However,few researches in the shear wave velocity in organic shale have been carried out so far.In order to analyze the structure of organic shale and predict the shear wave velocity,the authors propose two methods based on petrophysical model and BP neural network respectively,to calculate shear wave velocity.For the method based on petrophysics model,the authors discuss the pore structure and the space taken by kerogen to construct a petrophysical model of the shale,and establish the quantitative relationship between the P-wave and S-wave velocities of shale and physical parameters such as pore aspect ratio,porosity and density.The best estimation of pore aspect ratio can be obtained by minimizing the error between the predictions and the actual measurements of the P-wave velocity.The optimal porosity aspect ratio and the shear wave velocity are predicted.For the BP neural network method that applying BP neural network to the shear wave prediction,the relationship between the physical properties of the shale and the elastic parameters is obtained by training the BP neural network,and the P-wave and S-wave velocities are predicted from the reservoir parameters based on the trained relationship.The above two methods were tested by using actual logging data of the shale reservoirs in the Jiaoshiba area of Sichuan Province.The predicted shear wave velocities of the two methods match well with the actual shear wave velocities,indicating that these two methods are effective in predicting shear wave velocity.
文摘The HCl emission characteristics of typical municipal solid waste(MSW) components and their mixtures have been investigated in a Φ150 mm fluidized bed. Some influencing factors of HCl emission in MSW fluidized bed incinerator was found in this study. The HCl emission is increasing with the growth of bed temperature, while it is decreasing with the increment of oxygen concentration at furnace exit. When the weight percentage of auxiliary coal is increased, the conversion rate of Cl to HCl is increasing. The HCl emission is decreased, if the sorbent(CaO) is added during the incineration process. Based on these experimental results, a 14×6×1 three-layer BP neural networks prediction model of HCl emission in MSW/coal co-fired fluidized bed incinerator was built. The numbers of input nodes and hidden nodes were fixed on by canonical correlation analysis technique and dynamic construction method respectively. The prediction results of this model gave good agreement with the experimental results, which indicates that the model has relatively high accuracy and good generalization ability. It was found that BP neural network is an effectual method used to predict the HCl emission of MSW/coal co-fired fluidized bed incinerator.
基金Supported by Science and Technology Project of China National Tobacco Corporation(2009YN005&2010YN18&2010YN19)
文摘In order to effectively predict occurrence quantity of Myzus persicae, BP neural network theory and method was used to establish prediction model for oc- currence quantity of M. persicae. Meanwhile, QPSO algorithm was used to optimize connection weight and threshold value of BP neural network, so as to determine. the optimal connection weight and threshold value. The historical data of M. persica quantity in Hongta County, Yuxi City of Yunnan Province from 2003 to 2006 was adopted as training samples, and the occurrence quantities of M. persicae from 2007 to 2009 were predicted. The prediction accuracy was 99.35%, the mini- mum completion time was 30 s, the average completion time was 34.5 s, and the running times were 19. The prediction effect of the model was obviously superior to other prediction models. The experiment showed that this model was more effective and feasible, with faster convergence rate and stronger stability, and could solve the similar problems in prediction and clustering. The study provides a theoretical basis for comprehensive prevention and control against M. persicae.
文摘In order to identify continuous B-cell epitopes effectively and to increase the success rate of experimental identification, the modified Back Propagation artificial neural network (BP neural network) was used to predict the continuous B-cell epitopes, and finally the predictive model for the B-cells epitopes was established. Comparing with the other predictive models, the prediction performance of this model is more excellent (AUC = 0.723). For the purpose of verifying the performance of the model, the prediction to the SWISS PROT NUMBER: P08677 was carried on, and the satisfying results were obtained.