Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity insp...Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal, in which nonlocal similarity explores the signal sparsity from similar patches, and cosparsity assumes that the signal is sparse after a possibly redundant transform. Meanwhile, an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance. Finally, IRLSM and RACoSaMP are adopted to solve the objective function. Experimental results demonstrate that the proposed method is superior to conventional CS methods, like K-SVD and state-of-art method nonlocally centralized sparse representation(NCSR), in terms of both visual results and quantitative measures.展开更多
This paper presents an image denoising method based on bilateral filtering and non-local means. The non-local region texture or structure of the image has the characteristics of repetition, which can be used to effect...This paper presents an image denoising method based on bilateral filtering and non-local means. The non-local region texture or structure of the image has the characteristics of repetition, which can be used to effectively preserve the edge and detail of the image. And compared with classical methods, bilateral filtering method has a better performance in denosing for the reason that the weight includes the geometric closeness factor and the intensity similarity factor. We combine the geometric closeness factor with the weight of non-local means, and construct a new weight. Experimental results show that the modified algorithm can achieve better performance. And it can protect the image detail and structure information better.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61403146 and 61603105)the Fundamental Research Funds for the Central Universities(No.2015ZM128)the Science and Technology Program of Guangzhou in China(Nos.201707010054 and 201704030072)
文摘Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal, in which nonlocal similarity explores the signal sparsity from similar patches, and cosparsity assumes that the signal is sparse after a possibly redundant transform. Meanwhile, an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance. Finally, IRLSM and RACoSaMP are adopted to solve the objective function. Experimental results demonstrate that the proposed method is superior to conventional CS methods, like K-SVD and state-of-art method nonlocally centralized sparse representation(NCSR), in terms of both visual results and quantitative measures.
基金supported by the Student’s Platform for Innovation and Entrepreneurship Training Program(No.201510060022)
文摘This paper presents an image denoising method based on bilateral filtering and non-local means. The non-local region texture or structure of the image has the characteristics of repetition, which can be used to effectively preserve the edge and detail of the image. And compared with classical methods, bilateral filtering method has a better performance in denosing for the reason that the weight includes the geometric closeness factor and the intensity similarity factor. We combine the geometric closeness factor with the weight of non-local means, and construct a new weight. Experimental results show that the modified algorithm can achieve better performance. And it can protect the image detail and structure information better.