期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An adaptive image sparse reconstruction method combined with nonlocal similarity and cosparsity for mixed Gaussian-Poisson noise removal 被引量:1
1
作者 陈勇翡 高红霞 +1 位作者 吴梓灵 康慧 《Optoelectronics Letters》 EI 2018年第1期57-60,共4页
Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity insp... Compressed sensing(CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal, in which nonlocal similarity explores the signal sparsity from similar patches, and cosparsity assumes that the signal is sparse after a possibly redundant transform. Meanwhile, an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance. Finally, IRLSM and RACoSaMP are adopted to solve the objective function. Experimental results demonstrate that the proposed method is superior to conventional CS methods, like K-SVD and state-of-art method nonlocally centralized sparse representation(NCSR), in terms of both visual results and quantitative measures. 展开更多
关键词 SVD AK An adaptive image sparse reconstruction method combined with nonlocal similarity and cosparsity for mixed Gaussian-Poisson noise removal MSR
原文传递
A novel denoising method for infrared image based on bilateral filtering and non-local means 被引量:6
2
作者 刘凤连 孙梦尧 蔡文娜 《Optoelectronics Letters》 EI 2017年第3期237-240,共4页
This paper presents an image denoising method based on bilateral filtering and non-local means. The non-local region texture or structure of the image has the characteristics of repetition, which can be used to effect... This paper presents an image denoising method based on bilateral filtering and non-local means. The non-local region texture or structure of the image has the characteristics of repetition, which can be used to effectively preserve the edge and detail of the image. And compared with classical methods, bilateral filtering method has a better performance in denosing for the reason that the weight includes the geometric closeness factor and the intensity similarity factor. We combine the geometric closeness factor with the weight of non-local means, and construct a new weight. Experimental results show that the modified algorithm can achieve better performance. And it can protect the image detail and structure information better. 展开更多
关键词 bilateral filtering similarity pixel texture combine repetition neighborhood preserve noisy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部