Automatic word-segmentation is widely used in the ambiguity cancellation when processing large-scale real text,but during the process of unknown word detection in Chinese word segmentation,many detected word candidate...Automatic word-segmentation is widely used in the ambiguity cancellation when processing large-scale real text,but during the process of unknown word detection in Chinese word segmentation,many detected word candidates are invalid.These false unknown word candidates deteriorate the overall segmentation accuracy,as it will affect the segmentation accuracy of known words.In this paper,we propose several methods for reducing the difficulties and improving the accuracy of the word-segmentation of written Chinese,such as full segmentation of a sentence,processing the duplicative word,idioms and statistical identification for unknown words.A simulation shows the feasibility of our proposed methods in improving the accuracy of word-segmentation of Chinese.展开更多
In order to improve Chinese overlapping ambiguity resolution based on a support vector machine, statistical features are studied for representing the feature vectors. First, four statistical parameters-mutual informat...In order to improve Chinese overlapping ambiguity resolution based on a support vector machine, statistical features are studied for representing the feature vectors. First, four statistical parameters-mutual information, accessor variety, two-character word frequency and single-character word frequency are used to describe the feature vectors respectively. Then other parameters are tried to add as complementary features to the parameters which obtain the best results for further improving the classification performance. Experimental results show that features represented by mutual information, single-character word frequency and accessor variety can obtain an optimum result of 94. 39%. Compared with a commonly used word probability model, the accuracy has been improved by 6. 62%. Such comparative results confirm that the classification performance can be improved by feature selection and representation.展开更多
文摘Automatic word-segmentation is widely used in the ambiguity cancellation when processing large-scale real text,but during the process of unknown word detection in Chinese word segmentation,many detected word candidates are invalid.These false unknown word candidates deteriorate the overall segmentation accuracy,as it will affect the segmentation accuracy of known words.In this paper,we propose several methods for reducing the difficulties and improving the accuracy of the word-segmentation of written Chinese,such as full segmentation of a sentence,processing the duplicative word,idioms and statistical identification for unknown words.A simulation shows the feasibility of our proposed methods in improving the accuracy of word-segmentation of Chinese.
文摘In order to improve Chinese overlapping ambiguity resolution based on a support vector machine, statistical features are studied for representing the feature vectors. First, four statistical parameters-mutual information, accessor variety, two-character word frequency and single-character word frequency are used to describe the feature vectors respectively. Then other parameters are tried to add as complementary features to the parameters which obtain the best results for further improving the classification performance. Experimental results show that features represented by mutual information, single-character word frequency and accessor variety can obtain an optimum result of 94. 39%. Compared with a commonly used word probability model, the accuracy has been improved by 6. 62%. Such comparative results confirm that the classification performance can be improved by feature selection and representation.