In ref. [1] it is shown that the Mobius-Rota inversion can be generalized to any locallystandard infinite poset S in the nonstandard sense. The result is as follows. Let C be a locally<sup>*</sup>-finite p...In ref. [1] it is shown that the Mobius-Rota inversion can be generalized to any locallystandard infinite poset S in the nonstandard sense. The result is as follows. Let C be a locally<sup>*</sup>-finite poset with a 0-element O. Suppose that <sup>*</sup>μ<sub>1</sub>∈<sup>*</sup>I(C,<sup>*</sup>K). a <sup>*</sup>-incidence algebra of C,over a field <sup>*</sup>K of characteristic O. possesses an inverse <sup>*</sup>μ<sub>2</sub>=<sup>*</sup>μ<sub>1</sub><sup>-1</sup>,where <sup>*</sup>μ<sub>1</sub>, <sup>*</sup>μ<sub>2</sub> are<sup>*</sup>-Mobius operators. Then for <sup>*</sup>f, <sup>*</sup>g∈Map (C. <sup>*</sup>K), the functions from C into <sup>*</sup>K,展开更多
文摘In ref. [1] it is shown that the Mobius-Rota inversion can be generalized to any locallystandard infinite poset S in the nonstandard sense. The result is as follows. Let C be a locally<sup>*</sup>-finite poset with a 0-element O. Suppose that <sup>*</sup>μ<sub>1</sub>∈<sup>*</sup>I(C,<sup>*</sup>K). a <sup>*</sup>-incidence algebra of C,over a field <sup>*</sup>K of characteristic O. possesses an inverse <sup>*</sup>μ<sub>2</sub>=<sup>*</sup>μ<sub>1</sub><sup>-1</sup>,where <sup>*</sup>μ<sub>1</sub>, <sup>*</sup>μ<sub>2</sub> are<sup>*</sup>-Mobius operators. Then for <sup>*</sup>f, <sup>*</sup>g∈Map (C. <sup>*</sup>K), the functions from C into <sup>*</sup>K,