Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in undergroun...Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment.展开更多
Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to...Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to study their physical,chemical,and mechanical properties.In this context,the present study relates to the extraction,characterization,and optimization of Typha angustata L.stem fibers.For this purpose,desirability functions and response surface methodology were applied to simultaneously optimize the diameter(D),linear density(LD);yield(Y),lignin fraction(L),and tenacity(T)of Typha stem fibers.Typha stems have been subjected to both alkali(NaOH)and enzymatic(pectinex ultra-SPL)treatments.Three levels of process variables including enzyme concentration(10,15,and 20 ml/L)and treatment duration(10,15,and 20 days)were used to design the experiments according to the factorial design.Experimental results were examined by analysis of variance and fitted to second order polynomial model using multiple regression analysis.The Derringer’s desirability function released that the values of process variables generating optimized diameter,linear density,yield,lignin ratio and tenacity are 20 ml/L and 20 days for concentration of pectinex ultra-SPL enzyme and treatment duration,respectively.Confirmation was performed and high degree of correlation was found between the experimental and statistical values.Moreover,the morphological structure has been investigated by the scanning electron microscope,showing a crenelated structure of ultimate fiber bundles of cellulose composing the Typha fiber.Compared to Typha stem non-treated fibers(TSNTF),Typha stem combined treated fibers(TSCTF),brings to improve mechanical properties.This change in mechanical properties is affected by modifying the fiber structure showing alpha cellulose of(66.86%)and lignin ratio of(10.83%)with a crystallinity index of(58.47%).展开更多
In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the ...In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production.展开更多
A laboratory scale test was conducted in a combined membrane process (CMP) with a capacity of 2.91 m3/d for 240 d to treat the mixed wastewater of humidity condensate, hygiene wastewater and urine in submarine cabin...A laboratory scale test was conducted in a combined membrane process (CMP) with a capacity of 2.91 m3/d for 240 d to treat the mixed wastewater of humidity condensate, hygiene wastewater and urine in submarine cabin during prolonged voyage. Removal performance of chemical oxygen demand (COD), ammonia nitrogen (NH4^+-N), turbidity and anionic surfactants (LAS) was investigated under different conditions. It was observed that the effluent COD, NH4^+-N, turbidity and LAS flocculated in ranges of 0.19-0.85 mg/L, 0.03-0.18 mg/L, 0.0-0.15 NTU and 0.0-0.05 mg/L, respectively in spite of considerable fluctuation in corresponding influent of 2120-5350 mg/L, 79.5-129.3 mg/L, 110-181.1NTU and 4.9-5.4 mg/L. The effluent quality of the CMP could meet the requirements of mechanical water and hygiene water according to the class I water quality standards in China (GB3838-2002). The removal rates of COD, NH4^+-N, turbidity and LAS removed in the MBR were more than 90%, which indicated that biodegradation is indispensable and plays a major role in the wastewater treatment and reuse. A model, built on the back propagation neural network (BPNN) theory, was developed for the simulation of CMP and produced high reliability. The average error of COD and NH4^+-N was 5.14% and 6.20%, respectively, and the root mean squared error of turbidity and LAS was 2.76% and 1.41%, respectively. The results indicated that the model well fitted the laboratory data, and was able to simulate the removal of COD, NH4^+-N, turbidity and LAS. It also suggested that the model proposed could reflect and manage the operation of CMP for the treatment of the mixed wastewaters in submarine.展开更多
The experiment was carried out in a combined blowing converter.The natural gas was supplied as the cooling medium for the bottom lance.The blow- ing practice of medium P hot metal (0.30-0.85% [P]) indicated that with ...The experiment was carried out in a combined blowing converter.The natural gas was supplied as the cooling medium for the bottom lance.The blow- ing practice of medium P hot metal (0.30-0.85% [P]) indicated that with better stirring at the bottom of the converter and lower P_(CO),this steelmgking process was favorable to reduce the amount of [C] and [O] and increase the (P_2O_5)/[P]. The maximum rate of dephospborization might be high up to 0.0a5%/min and the P content in steel could be reduced to lower than 0.03% by single slag-forming operation.展开更多
The aims of this study is to design and optimize the functioning of a full continuous combined process based on electrocoagulaion-adsorption on crude Tunisian clay to treat a real textile effluent.The clay characteriz...The aims of this study is to design and optimize the functioning of a full continuous combined process based on electrocoagulaion-adsorption on crude Tunisian clay to treat a real textile effluent.The clay characterization shows that the used clay is a rich-smectite clay.The response surface methodology(RSM)technique based on Box-Behnken design(BBD)was used to optimize the process.At optimum conditions which are initial pH solution of 8.24,effluent flow rate of 0.5 L·min^(-1),voltage of 70 V,and added suspension of clay flow rate of 100 ml·min^(-1) the achieved color,chemical oxygen demand(COD)and total suspended solid(TSS)removal efficiencies were respectively 96.87%,89.77%and 84.46%with0.75 USD·m^(-3) as total cost.The additional laboratory experiments at optimum conditions agree with the predicted results,which confirm the accuracy and the capability of RSM to predict results in the defined space.Finally the designed process could be a good eco-friendly alternative to treat and reuse wastewater in industrial process with reasonable cost.展开更多
The combined submerged biofilm ( SBF)-activated sludge (AS) process for treatment of municipal wastewater in a small city in China is described in this paper. The process exhibited high removal efficiencies for ca...The combined submerged biofilm ( SBF)-activated sludge (AS) process for treatment of municipal wastewater in a small city in China is described in this paper. The process exhibited high removal efficiencies for carbonaceous substances, nitrogen and phosphorus which mainly took place in the combined SBF-AS biore- actor. The SBF-AS bioreactor was divided into pre-anoxic, anaerobic, anoxic and aerobic zones from inlet to outlet, in which fixed biofilm carriers were packed. Excellent performance had been obtained under normal operating conditions in more than one year of operation in Dong' e municipal WWTP, Shandong province, with mean removal efficiencies of BOD5 93.4%, COD 88%, SS 92%, NH4 - N 82. 1%, TP 75% and TN 66.7%, and quite high effluent quality such as BOD5 6 to 10 rag/L, COD 20 to 40 rag/L, SS 5 to 10 rag/L, TN 10 to 20 rag/L, NH4 - N 4 to 8 mg/L and TP 0. 6 to 1.0 mg/L. The effluent was reused multi-purposely, such as toilet flushing, green belt watering and artificial lake pounding. Simultaneous nitrification and denitrification took place due to the DO gradient in biofilm in aerobic zone of the SBF-AS bioreactor, which made TN removal efficiency improved remarkably in system. Some activated sludge was returned from final clarifiers to the bioreactor for phosphorus removal. The process had the advantages of low investment and low operational/ maintenance (O/M) costs, low sludge yield and was preferably employed in small towns and cities.展开更多
In this paper, the kinematically admissible velocity field with surface crack on forward extruding bar is put forward during the axisymmetric cup-bar combined extrusion process, in accordance with the results of model...In this paper, the kinematically admissible velocity field with surface crack on forward extruding bar is put forward during the axisymmetric cup-bar combined extrusion process, in accordance with the results of model experiments.On the basis of velocity field, the necessary condition for surface crack formation on the forward extruding bar is derived, with the help of upper bound theorem and the minimum energy principle. Meanwhile, the relationships between surface crack formation and combination of reduction in area for the part of forward and backward extursions relative residual thickness of billet (T/R0),frictional factor (m) or relative land length of ram and chamber are calculated during the extrusion process. Therefore, whether the surface crack on forward exturding bar occurs can be predicted before extruding the lower-plasticity metals for axisymmetric cup-bar combined extrusion process.The analytical results agree very well with experimental results of aluminium alloy LY12 (ASTM 2024) and LC4 (ASTM 7075).展开更多
The continuous constructive challenge to improve the functionality and efficiency of components always results in higher demands on production engineering, against the background of the generally increasing cost press...The continuous constructive challenge to improve the functionality and efficiency of components always results in higher demands on production engineering, against the background of the generally increasing cost pressure. In many cases, you will just succeed in producing competitive and innovative products by combining and coupling of different procedures to an independent (hybrid) technology. The use of hybrid procedures for metal joining and heat treatment of metallic materials finds more and more industrial fields of application. Modern vacuum lines with integrated pressurized gas quenching are considered high-performance and flexible means of production for brazing and heat treatment tasks as well in the turbine industry as in the mould making and tool manufacturing industry. In doing so, the heat treatment is coupled with the brazing cycle in a combined process so that the brazing temperatures and soak times are adapted to the necessary temperatures and times for solution heat treatment and austeniting. This user-oriented article describes on the one hand examples of brazing of turbine components, but above all the practical experience from the plastics processing industry, where the requirement for a high-efficient cooling of injection moulding dies gains more and more importance. The combined procedure "Vacuum Brazing and Hardening" offers plenty of possibilities to produce mould inserts with an efficient tempering system in an economic way.展开更多
A novel method for the preparation of single-phase ammonium dimolybdate with industrial ammonium molybdate was studied. Various in- fluential factors were evaluated in the paper, including reaction temperature, reacti...A novel method for the preparation of single-phase ammonium dimolybdate with industrial ammonium molybdate was studied. Various in- fluential factors were evaluated in the paper, including reaction temperature, reaction time, initial molybdenum concentration, initial NH_3 /Mo molar ratio, and stirring speed. Under the optimum experimental conditions, the crystallization rate of product is 85.23%. The X-ray diffraction (XRD) analysis and chemical analysis show that the product is single-phase ammonium dimolybdate, and no impurity phases exist. The scanning electronic microscope (SEM) image reveals uniform particle size, good particle dispersion, and no agglomeration between particles. Meanwhile, the final pH value of acidification was investigated. The total molybdenum recovery can reach up to 99.40%, and the main phases of acidification product are the same as those of raw material with the final pH value of 1.5. This determines that the acidification product can be used as a raw material to produce single-phase ammonium dimolybdate.展开更多
Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juic...Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juices were investigated under 20 - 80 MPa, 35 - 58℃, pH 3. 0 - 6. 0 and processing time 0-8 min. Results showed that the loss of Vc increased with elevated processing temperatures(50 MPa, 4 min). When the temperature of raw juices was 35℃, the retention of total Vc was higher under 40 - 60 MPa than that under the pressure < 40 MPa or > 60 MPa, and it was up to 94%(4 min). The retention of total Vc decreases slowly within 6 min, but rapidly after 6 min. The pH can also influence the retention of total Vc, and this retention can come to a highest point at pH 6.0.展开更多
Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd ju...Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd juices were investigated. Results showed that the processing factors such as pressure, temperature, pH and processing time are important to the POD activity. POD in crude juices could be inactivated apparently above 50 MPa(pH 4.6, 35℃, 4 min), and activated at 20 MPa ( P < 0.01). Its remarkable inactivation could also be observed at 45 and 55℃ (20 MPa, pH 4.6, 4 min), and the evident activation appears at the material temperature 35℃ ( P < 0.01). The pH 3.0 could destroy POD almost completely (20 MPa, 35℃, 4 min), while pH 6.0 could not influence apparently the POD activity in crude juices( P > 0.05). In addition, the rules of POD activity along with the treatment time are variational under different processing pressures. The higher the treating pressure is, the shorter the processing time is needed to inactivate POD.展开更多
Chlorophenols are typical priority pollutants listed by USEPA (U.S. Environmental Protection Agency). The removal of chlorophenol could be carried out by a combination of electrochemical reduction and oxidation method...Chlorophenols are typical priority pollutants listed by USEPA (U.S. Environmental Protection Agency). The removal of chlorophenol could be carried out by a combination of electrochemical reduction and oxidation method. Results showed that it was feasible to degrade contaminants containing chlorine atoms by electrochemical reduction to form phenol, which was further degraded on the anode by electrochemical oxidation. Chlorophenol removal rate was more than 90% by the combined electro- chemical reduction and oxidation at current of 6 mA and pH 6. The hydrogen atom is a powerful reducing agent that reductively dechlorinates chlorophenols. The instantaneous current efficiency was calculated and the results indicated that cathodic reduction was the main contributor to the degradation of chlorophenol.展开更多
A job shop scheduling problem with a combination processing in complex production environment is proposed. Based on the defining of "non-elastic combination processing relativity" and "virtual process", the proble...A job shop scheduling problem with a combination processing in complex production environment is proposed. Based on the defining of "non-elastic combination processing relativity" and "virtual process", the problem can be simplified and transformed to a traditional one. On the basis of the dispatching rules select engine and considered factors of complex production environment, a heuristic method is designed. The algorithm has been applied to a mould enterprise in Shenzhen for half a year. The practice showed that by using the method suggested the number of delayed orders was decreased about 20% and the productivity was increased by 10 to 20%.展开更多
基金supported by National Key R&D Program of China(No.2022YFC3004705)the National Natural Science Foundation of China(Nos.52074280,52227901 and 52204249)National Natural Science Foundation of China Youth Fund(No.52104230).
文摘Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment.
文摘Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to study their physical,chemical,and mechanical properties.In this context,the present study relates to the extraction,characterization,and optimization of Typha angustata L.stem fibers.For this purpose,desirability functions and response surface methodology were applied to simultaneously optimize the diameter(D),linear density(LD);yield(Y),lignin fraction(L),and tenacity(T)of Typha stem fibers.Typha stems have been subjected to both alkali(NaOH)and enzymatic(pectinex ultra-SPL)treatments.Three levels of process variables including enzyme concentration(10,15,and 20 ml/L)and treatment duration(10,15,and 20 days)were used to design the experiments according to the factorial design.Experimental results were examined by analysis of variance and fitted to second order polynomial model using multiple regression analysis.The Derringer’s desirability function released that the values of process variables generating optimized diameter,linear density,yield,lignin ratio and tenacity are 20 ml/L and 20 days for concentration of pectinex ultra-SPL enzyme and treatment duration,respectively.Confirmation was performed and high degree of correlation was found between the experimental and statistical values.Moreover,the morphological structure has been investigated by the scanning electron microscope,showing a crenelated structure of ultimate fiber bundles of cellulose composing the Typha fiber.Compared to Typha stem non-treated fibers(TSNTF),Typha stem combined treated fibers(TSCTF),brings to improve mechanical properties.This change in mechanical properties is affected by modifying the fiber structure showing alpha cellulose of(66.86%)and lignin ratio of(10.83%)with a crystallinity index of(58.47%).
基金Natural Science Foundation of Shanghai,China(No.19ZR1402300)。
文摘In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production.
基金This work was supported by the Heilongjiang Natural Science Foundation(No.E2007-04)the National Natural Science Foundation of China(No.50908062)the State Key Laboratory of Urban Water Resource and Environment(No.HIT-QAK200808).
文摘A laboratory scale test was conducted in a combined membrane process (CMP) with a capacity of 2.91 m3/d for 240 d to treat the mixed wastewater of humidity condensate, hygiene wastewater and urine in submarine cabin during prolonged voyage. Removal performance of chemical oxygen demand (COD), ammonia nitrogen (NH4^+-N), turbidity and anionic surfactants (LAS) was investigated under different conditions. It was observed that the effluent COD, NH4^+-N, turbidity and LAS flocculated in ranges of 0.19-0.85 mg/L, 0.03-0.18 mg/L, 0.0-0.15 NTU and 0.0-0.05 mg/L, respectively in spite of considerable fluctuation in corresponding influent of 2120-5350 mg/L, 79.5-129.3 mg/L, 110-181.1NTU and 4.9-5.4 mg/L. The effluent quality of the CMP could meet the requirements of mechanical water and hygiene water according to the class I water quality standards in China (GB3838-2002). The removal rates of COD, NH4^+-N, turbidity and LAS removed in the MBR were more than 90%, which indicated that biodegradation is indispensable and plays a major role in the wastewater treatment and reuse. A model, built on the back propagation neural network (BPNN) theory, was developed for the simulation of CMP and produced high reliability. The average error of COD and NH4^+-N was 5.14% and 6.20%, respectively, and the root mean squared error of turbidity and LAS was 2.76% and 1.41%, respectively. The results indicated that the model well fitted the laboratory data, and was able to simulate the removal of COD, NH4^+-N, turbidity and LAS. It also suggested that the model proposed could reflect and manage the operation of CMP for the treatment of the mixed wastewaters in submarine.
文摘The experiment was carried out in a combined blowing converter.The natural gas was supplied as the cooling medium for the bottom lance.The blow- ing practice of medium P hot metal (0.30-0.85% [P]) indicated that with better stirring at the bottom of the converter and lower P_(CO),this steelmgking process was favorable to reduce the amount of [C] and [O] and increase the (P_2O_5)/[P]. The maximum rate of dephospborization might be high up to 0.0a5%/min and the P content in steel could be reduced to lower than 0.03% by single slag-forming operation.
文摘The aims of this study is to design and optimize the functioning of a full continuous combined process based on electrocoagulaion-adsorption on crude Tunisian clay to treat a real textile effluent.The clay characterization shows that the used clay is a rich-smectite clay.The response surface methodology(RSM)technique based on Box-Behnken design(BBD)was used to optimize the process.At optimum conditions which are initial pH solution of 8.24,effluent flow rate of 0.5 L·min^(-1),voltage of 70 V,and added suspension of clay flow rate of 100 ml·min^(-1) the achieved color,chemical oxygen demand(COD)and total suspended solid(TSS)removal efficiencies were respectively 96.87%,89.77%and 84.46%with0.75 USD·m^(-3) as total cost.The additional laboratory experiments at optimum conditions agree with the predicted results,which confirm the accuracy and the capability of RSM to predict results in the defined space.Finally the designed process could be a good eco-friendly alternative to treat and reuse wastewater in industrial process with reasonable cost.
文摘The combined submerged biofilm ( SBF)-activated sludge (AS) process for treatment of municipal wastewater in a small city in China is described in this paper. The process exhibited high removal efficiencies for carbonaceous substances, nitrogen and phosphorus which mainly took place in the combined SBF-AS biore- actor. The SBF-AS bioreactor was divided into pre-anoxic, anaerobic, anoxic and aerobic zones from inlet to outlet, in which fixed biofilm carriers were packed. Excellent performance had been obtained under normal operating conditions in more than one year of operation in Dong' e municipal WWTP, Shandong province, with mean removal efficiencies of BOD5 93.4%, COD 88%, SS 92%, NH4 - N 82. 1%, TP 75% and TN 66.7%, and quite high effluent quality such as BOD5 6 to 10 rag/L, COD 20 to 40 rag/L, SS 5 to 10 rag/L, TN 10 to 20 rag/L, NH4 - N 4 to 8 mg/L and TP 0. 6 to 1.0 mg/L. The effluent was reused multi-purposely, such as toilet flushing, green belt watering and artificial lake pounding. Simultaneous nitrification and denitrification took place due to the DO gradient in biofilm in aerobic zone of the SBF-AS bioreactor, which made TN removal efficiency improved remarkably in system. Some activated sludge was returned from final clarifiers to the bioreactor for phosphorus removal. The process had the advantages of low investment and low operational/ maintenance (O/M) costs, low sludge yield and was preferably employed in small towns and cities.
文摘In this paper, the kinematically admissible velocity field with surface crack on forward extruding bar is put forward during the axisymmetric cup-bar combined extrusion process, in accordance with the results of model experiments.On the basis of velocity field, the necessary condition for surface crack formation on the forward extruding bar is derived, with the help of upper bound theorem and the minimum energy principle. Meanwhile, the relationships between surface crack formation and combination of reduction in area for the part of forward and backward extursions relative residual thickness of billet (T/R0),frictional factor (m) or relative land length of ram and chamber are calculated during the extrusion process. Therefore, whether the surface crack on forward exturding bar occurs can be predicted before extruding the lower-plasticity metals for axisymmetric cup-bar combined extrusion process.The analytical results agree very well with experimental results of aluminium alloy LY12 (ASTM 2024) and LC4 (ASTM 7075).
文摘The continuous constructive challenge to improve the functionality and efficiency of components always results in higher demands on production engineering, against the background of the generally increasing cost pressure. In many cases, you will just succeed in producing competitive and innovative products by combining and coupling of different procedures to an independent (hybrid) technology. The use of hybrid procedures for metal joining and heat treatment of metallic materials finds more and more industrial fields of application. Modern vacuum lines with integrated pressurized gas quenching are considered high-performance and flexible means of production for brazing and heat treatment tasks as well in the turbine industry as in the mould making and tool manufacturing industry. In doing so, the heat treatment is coupled with the brazing cycle in a combined process so that the brazing temperatures and soak times are adapted to the necessary temperatures and times for solution heat treatment and austeniting. This user-oriented article describes on the one hand examples of brazing of turbine components, but above all the practical experience from the plastics processing industry, where the requirement for a high-efficient cooling of injection moulding dies gains more and more importance. The combined procedure "Vacuum Brazing and Hardening" offers plenty of possibilities to produce mould inserts with an efficient tempering system in an economic way.
基金supported by the National Natural Science Foundation of China(No.51072233)
文摘A novel method for the preparation of single-phase ammonium dimolybdate with industrial ammonium molybdate was studied. Various in- fluential factors were evaluated in the paper, including reaction temperature, reaction time, initial molybdenum concentration, initial NH_3 /Mo molar ratio, and stirring speed. Under the optimum experimental conditions, the crystallization rate of product is 85.23%. The X-ray diffraction (XRD) analysis and chemical analysis show that the product is single-phase ammonium dimolybdate, and no impurity phases exist. The scanning electronic microscope (SEM) image reveals uniform particle size, good particle dispersion, and no agglomeration between particles. Meanwhile, the final pH value of acidification was investigated. The total molybdenum recovery can reach up to 99.40%, and the main phases of acidification product are the same as those of raw material with the final pH value of 1.5. This determines that the acidification product can be used as a raw material to produce single-phase ammonium dimolybdate.
文摘Based on the instantaneous high-pressure(IHP)produced by high-pressure single pole-cylinder pump, the effects of combining this pressure with medium temperature on the retention of total vitamin C(Vc)in wax gourd juices were investigated under 20 - 80 MPa, 35 - 58℃, pH 3. 0 - 6. 0 and processing time 0-8 min. Results showed that the loss of Vc increased with elevated processing temperatures(50 MPa, 4 min). When the temperature of raw juices was 35℃, the retention of total Vc was higher under 40 - 60 MPa than that under the pressure < 40 MPa or > 60 MPa, and it was up to 94%(4 min). The retention of total Vc decreases slowly within 6 min, but rapidly after 6 min. The pH can also influence the retention of total Vc, and this retention can come to a highest point at pH 6.0.
文摘Based on the instantaneous pressurization and depressurization produced by high pressure single pole cylinder pump and valve, the effects of the continuous processing on the peroxidase (POD) activity in wax gourd juices were investigated. Results showed that the processing factors such as pressure, temperature, pH and processing time are important to the POD activity. POD in crude juices could be inactivated apparently above 50 MPa(pH 4.6, 35℃, 4 min), and activated at 20 MPa ( P < 0.01). Its remarkable inactivation could also be observed at 45 and 55℃ (20 MPa, pH 4.6, 4 min), and the evident activation appears at the material temperature 35℃ ( P < 0.01). The pH 3.0 could destroy POD almost completely (20 MPa, 35℃, 4 min), while pH 6.0 could not influence apparently the POD activity in crude juices( P > 0.05). In addition, the rules of POD activity along with the treatment time are variational under different processing pressures. The higher the treating pressure is, the shorter the processing time is needed to inactivate POD.
基金Project supported by the Foundation of Education Ministry of China(No. 98679) and the Natural Science Foundation of Zhejiang Province(No. 200043), China
文摘Chlorophenols are typical priority pollutants listed by USEPA (U.S. Environmental Protection Agency). The removal of chlorophenol could be carried out by a combination of electrochemical reduction and oxidation method. Results showed that it was feasible to degrade contaminants containing chlorine atoms by electrochemical reduction to form phenol, which was further degraded on the anode by electrochemical oxidation. Chlorophenol removal rate was more than 90% by the combined electro- chemical reduction and oxidation at current of 6 mA and pH 6. The hydrogen atom is a powerful reducing agent that reductively dechlorinates chlorophenols. The instantaneous current efficiency was calculated and the results indicated that cathodic reduction was the main contributor to the degradation of chlorophenol.
基金Supported by Research Fund for the Doctoral Program of Higher Education of China(20060487072)National Key Technology R&D Program(2006BAF01A43)
文摘A job shop scheduling problem with a combination processing in complex production environment is proposed. Based on the defining of "non-elastic combination processing relativity" and "virtual process", the problem can be simplified and transformed to a traditional one. On the basis of the dispatching rules select engine and considered factors of complex production environment, a heuristic method is designed. The algorithm has been applied to a mould enterprise in Shenzhen for half a year. The practice showed that by using the method suggested the number of delayed orders was decreased about 20% and the productivity was increased by 10 to 20%.