In Wuxi Wastewater Treatment Plant, the Anaerobic, anoxic and oxic (A2/O) process was employed to remove the nitrogen and phosphorus, which exhibited the positive results of the high removal efficiency for phosphorus ...In Wuxi Wastewater Treatment Plant, the Anaerobic, anoxic and oxic (A2/O) process was employed to remove the nitrogen and phosphorus, which exhibited the positive results of the high removal efficiency for phosphorus with a range of 67.7% to 89.9% and an average value of 78.0. The effluent of phosphorus met the national discharge standard. The removal of TN was effected by both BOD variation of influent and wastewater temperature. TN removal was in the range of 28.5% to 55.8% with an average value of 39.4%. The energy cost was 0.15 kWh(m3d)-1 or 1.35 kWh(kgBOD@d)-1. The annual average sludge production was 46.3 m3d-1, the annual average dosage for the dewatering was 40 kg d-1 .展开更多
The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerob...The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerobic (A^2/O) bioreactors, developed on the basis of an expended granular sludge blanket (EGSB), granular sequencing batch reactor (GSBR) and intermittent cycle extended aeration system (ICEAS). Leachate was subjected to stripping by agitation process and poly ferric sulfate coagulation as a pretreatment process, in order to reduce both ammonia toxicity to microorganisms and the organic contents. The reactor was operated under three different operating systems, consisting of recycling sludge with air (A^2/O), recycling sludge without air (low oxygen) and a combination of both (A^2/O and low oxygen). The lowest effluent nutrient levels were realised by the combined system of A^2/O and low oxygen, which resulted in effluent of chemical oxygen demand (COD), NH3-N and biological oxygen demand (BOD5) concentrations of 98.20, 13.50 and 22.50 mg/L. The optimal operating conditions for the efficient removal of biological nutrient using the ICUSB reactor were examined to evaluate the influence of the parameters on its performance. The results showed that average removal efflciencies of COD and NH3- N of 96.49% and 99.39%, respectively were achieved under the condition of a hydraulic retention time of 12 hr, including 4 hr of pumping air into the reactor, with dissolved oxygen at an rate of 4 mg/L and an upflow velocity 2 m/hr. These combined processes were successfully employed and effectively decreased pollutant loading.展开更多
文摘In Wuxi Wastewater Treatment Plant, the Anaerobic, anoxic and oxic (A2/O) process was employed to remove the nitrogen and phosphorus, which exhibited the positive results of the high removal efficiency for phosphorus with a range of 67.7% to 89.9% and an average value of 78.0. The effluent of phosphorus met the national discharge standard. The removal of TN was effected by both BOD variation of influent and wastewater temperature. TN removal was in the range of 28.5% to 55.8% with an average value of 39.4%. The energy cost was 0.15 kWh(m3d)-1 or 1.35 kWh(kgBOD@d)-1. The annual average sludge production was 46.3 m3d-1, the annual average dosage for the dewatering was 40 kg d-1 .
基金supported by the Hubei Provincial Science and Technology Department(No.2006AA305A05)the China Scholarship Council (CSC)China University of Geosciences (CUG) for the financial support of this research
文摘The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerobic (A^2/O) bioreactors, developed on the basis of an expended granular sludge blanket (EGSB), granular sequencing batch reactor (GSBR) and intermittent cycle extended aeration system (ICEAS). Leachate was subjected to stripping by agitation process and poly ferric sulfate coagulation as a pretreatment process, in order to reduce both ammonia toxicity to microorganisms and the organic contents. The reactor was operated under three different operating systems, consisting of recycling sludge with air (A^2/O), recycling sludge without air (low oxygen) and a combination of both (A^2/O and low oxygen). The lowest effluent nutrient levels were realised by the combined system of A^2/O and low oxygen, which resulted in effluent of chemical oxygen demand (COD), NH3-N and biological oxygen demand (BOD5) concentrations of 98.20, 13.50 and 22.50 mg/L. The optimal operating conditions for the efficient removal of biological nutrient using the ICUSB reactor were examined to evaluate the influence of the parameters on its performance. The results showed that average removal efflciencies of COD and NH3- N of 96.49% and 99.39%, respectively were achieved under the condition of a hydraulic retention time of 12 hr, including 4 hr of pumping air into the reactor, with dissolved oxygen at an rate of 4 mg/L and an upflow velocity 2 m/hr. These combined processes were successfully employed and effectively decreased pollutant loading.