One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining (EDM) is confinement of plasma due to Lorentz forces. This paper presents a mathematical model to ...One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining (EDM) is confinement of plasma due to Lorentz forces. This paper presents a mathematical model to evaluate the effect of external magnetic field on crater depth and diameter in single- and multiple-discharge EDM process. The model incorporates three main effects of the magnetic field, which include plasma confinement, mean free path reduction and pulsating magnetic field effects. Upon the application of an external magnetic field, Lorentz forces that are developed across the plasma column confine the plasma column. Also, the magnetic field reduces the mean free path of electrons due to an increase in the plasma pressure and cycloidal path taken by the electrons between the electrodes. As the mean free path of electrons reduces, more ionization occurs in plasma column and eventually an increase in the current density at the inter-electrode gap occurs. The model results for crater depth and its diameter in single discharge dry EDM process show an error of 9%-10% over the respective experimental values.展开更多
We study the impact of steady,homogeneous,and external parallel electric and magnetic field strengths(eE||eB)on the chiral symmetry breaking-restoration and confinement-deconfinement phase transition.We also sketch th...We study the impact of steady,homogeneous,and external parallel electric and magnetic field strengths(eE||eB)on the chiral symmetry breaking-restoration and confinement-deconfinement phase transition.We also sketch the phase diagram of quantum chromodynamics(QCD)at a finite temperature T and in the presence of background fields.The unified formalism for this study is based on the Schwinger-Dyson equations,symmetry preserving vector-vector contact interaction model of quarks,and an optimal time regularization scheme.At T=0,in the purely magnetic case(i.e.,eE→0),we observe the well-known magnetic catalysis effect.However,in a pure electric field background(eB→0),the electric field tends to restore the chiral symmetry and deconfinement above the pseudo-critical electric field eE^(x,C)_(c).In the presence of both eE and eB,we determine the magnetic catalysis effect in the particular region where eB dominates over eE,whereas we observe the chiral inhibition(or electric chiral rotation)effect when eE overshadows eB.At finite T,in the pure electric field case,the phenomenon of inverse electric catalysis appears to exist in the proposed model.Conversely,for a pure magnetic field background,we observe the magnetic catalysis effect in the mean-field approximation and inverse magnetic catalysis with eB-dependent coupling.The combined effects of eE and eB on the pseudo-critical T^(x,C)_(c)yields an inverse electromagnetic catalysis,with and without an eB-dependent effective coupling of the model.The findings of this study agree well with the already predicted results obtained via lattice simulations and other reliable effective models of QCD.展开更多
The elastic wave propagation properties of phononic crystals(PnCs)composed of an elastic matrix embedded in magnetorheological and electrorheological elastomers are studied in this paper.The tunable band gaps and tran...The elastic wave propagation properties of phononic crystals(PnCs)composed of an elastic matrix embedded in magnetorheological and electrorheological elastomers are studied in this paper.The tunable band gaps and transmission spectra of these materials are calculated using the finite element method and supercell technology.The variations in the band gap characteristics with changes in the electric/magnetic fields are given.The numerical results show that the electric and magnetic fields can be used in combination to adjust the band gaps effectively.The start and stop frequencies of the band gap are obviously affected by the electric field,and the band gap width is regulated more significantly by the magnetic field.The widest and highest band gap can be obtained by combined application of the electric and magnetic fields.In addition,the band gaps can be moved to the low-frequency region by drilling holes in the PnC,which can also open or close new band gaps.These results indicate the possibility of multi-physical field regulation and design optimization of the elastic wave properties of intelligent PnCs.展开更多
: The effects of a magnetic field on the vibrational frequency, the ground state energy and the ground state binding energy of a weak-coupling polaron in asymmetrical Gaussian confinement potential quantum well (AGC...: The effects of a magnetic field on the vibrational frequency, the ground state energy and the ground state binding energy of a weak-coupling polaron in asymmetrical Gaussian confinement potential quantum well (AGCPQW) are investigated by using linear combination operator and unitary transformation methods. Our cal- culated results show that the vibrational frequency increases with increasing cyclotron frequency of the magnetic field; meanwhile, the absolute value of the ground state energy and the ground state binding energy decrease. The vibrational frequency, the absolute value of the ground state energy and the ground state binding energy are in- creasing functions of the barrier height of the AGCPQW. It is shown that the barrier height of the AGCPQW and the magnetic field are important factors that influence the properties of the magnetopolaron in AGCPQW.展开更多
文摘One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining (EDM) is confinement of plasma due to Lorentz forces. This paper presents a mathematical model to evaluate the effect of external magnetic field on crater depth and diameter in single- and multiple-discharge EDM process. The model incorporates three main effects of the magnetic field, which include plasma confinement, mean free path reduction and pulsating magnetic field effects. Upon the application of an external magnetic field, Lorentz forces that are developed across the plasma column confine the plasma column. Also, the magnetic field reduces the mean free path of electrons due to an increase in the plasma pressure and cycloidal path taken by the electrons between the electrodes. As the mean free path of electrons reduces, more ionization occurs in plasma column and eventually an increase in the current density at the inter-electrode gap occurs. The model results for crater depth and its diameter in single discharge dry EDM process show an error of 9%-10% over the respective experimental values.
文摘We study the impact of steady,homogeneous,and external parallel electric and magnetic field strengths(eE||eB)on the chiral symmetry breaking-restoration and confinement-deconfinement phase transition.We also sketch the phase diagram of quantum chromodynamics(QCD)at a finite temperature T and in the presence of background fields.The unified formalism for this study is based on the Schwinger-Dyson equations,symmetry preserving vector-vector contact interaction model of quarks,and an optimal time regularization scheme.At T=0,in the purely magnetic case(i.e.,eE→0),we observe the well-known magnetic catalysis effect.However,in a pure electric field background(eB→0),the electric field tends to restore the chiral symmetry and deconfinement above the pseudo-critical electric field eE^(x,C)_(c).In the presence of both eE and eB,we determine the magnetic catalysis effect in the particular region where eB dominates over eE,whereas we observe the chiral inhibition(or electric chiral rotation)effect when eE overshadows eB.At finite T,in the pure electric field case,the phenomenon of inverse electric catalysis appears to exist in the proposed model.Conversely,for a pure magnetic field background,we observe the magnetic catalysis effect in the mean-field approximation and inverse magnetic catalysis with eB-dependent coupling.The combined effects of eE and eB on the pseudo-critical T^(x,C)_(c)yields an inverse electromagnetic catalysis,with and without an eB-dependent effective coupling of the model.The findings of this study agree well with the already predicted results obtained via lattice simulations and other reliable effective models of QCD.
基金This work was supported by the National Natural Science Foundation of China(11872194 and 11572143).
文摘The elastic wave propagation properties of phononic crystals(PnCs)composed of an elastic matrix embedded in magnetorheological and electrorheological elastomers are studied in this paper.The tunable band gaps and transmission spectra of these materials are calculated using the finite element method and supercell technology.The variations in the band gap characteristics with changes in the electric/magnetic fields are given.The numerical results show that the electric and magnetic fields can be used in combination to adjust the band gaps effectively.The start and stop frequencies of the band gap are obviously affected by the electric field,and the band gap width is regulated more significantly by the magnetic field.The widest and highest band gap can be obtained by combined application of the electric and magnetic fields.In addition,the band gaps can be moved to the low-frequency region by drilling holes in the PnC,which can also open or close new band gaps.These results indicate the possibility of multi-physical field regulation and design optimization of the elastic wave properties of intelligent PnCs.
基金Project supported by the National Natural Science Foundation of China(Nos.11464033,11464034)
文摘: The effects of a magnetic field on the vibrational frequency, the ground state energy and the ground state binding energy of a weak-coupling polaron in asymmetrical Gaussian confinement potential quantum well (AGCPQW) are investigated by using linear combination operator and unitary transformation methods. Our cal- culated results show that the vibrational frequency increases with increasing cyclotron frequency of the magnetic field; meanwhile, the absolute value of the ground state energy and the ground state binding energy decrease. The vibrational frequency, the absolute value of the ground state energy and the ground state binding energy are in- creasing functions of the barrier height of the AGCPQW. It is shown that the barrier height of the AGCPQW and the magnetic field are important factors that influence the properties of the magnetopolaron in AGCPQW.