期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Performance of pond–wetland complexes as a preliminary processor of drinking water sources 被引量:10
1
作者 Weidong Wang Jun Zheng +4 位作者 Zhongqiong Wang Rongbin Zhang Qinghua Chen Xinfeng Yu Chengqing Yin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第1期119-133,共15页
Shijiuyang Constructed Wetland(110 hm^2) is a drinking water source treatment wetland with primary structural units of ponds and plant-bed/ditch systems. The wetland can process about 250,000 tonnes of source water ... Shijiuyang Constructed Wetland(110 hm^2) is a drinking water source treatment wetland with primary structural units of ponds and plant-bed/ditch systems. The wetland can process about 250,000 tonnes of source water in the Xincheng River every day and supplies raw water for Shijiuyang Drinking Water Plant. Daily data for 28 months indicated that the major water quality indexes of source water had been improved by one grade. The percentage increase for dissolved oxygen and the removal rates of ammonia nitrogen, iron and manganese were 73.63%, 38.86%, 35.64%, and 22.14% respectively. The treatment performance weight of ponds and plant-bed/ditch systems was roughly equal but they treated different pollutants preferentially. Most water quality indexes had better treatment efficacy with increasing temperature and inlet concentrations. These results revealed that the pond–wetland complexes exhibited strong buffering capacity for source water quality improvement. The treatment cost of Shijiuyang Drinking Water Plant was reduced by about 30.3%. Regional rainfall significantly determined the external river water levels and adversely deteriorated the inlet water quality, thus suggesting that the "hidden" diffuse pollution in the multitudinous stream branches as well as their catchments should be the controlling emphases for river source water protection in the future. The combination of pond and plant-bed/ditch systems provides a successful paradigm for drinking water source pretreatment. Three other drinking water source treatment wetlands with ponds and plant-bed/ditch systems are in operation or construction in the stream networks of the Yangtze River Delta and more people will be benefited. 展开更多
关键词 Pond–wetland combination Plant-bed/ditch system constructed root channel technology Semi-subsurface flow wetland Weighted comprehensive water quality index
原文传递
An innovative wood-chip-framework substrate used as slow-release carbon source to treat high-strength nitrogen wastewater 被引量:11
2
作者 Huai Li Zifang Chi +2 位作者 Baixing Yan Long Cheng Jianzheng Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第1期275-283,共9页
Removal of nitrogen in wastewater before discharge into receiving water courses is an important consideration in treatment systems.However,nitrogen removal efficiency is usually limited due to the low carbon/nitrogen... Removal of nitrogen in wastewater before discharge into receiving water courses is an important consideration in treatment systems.However,nitrogen removal efficiency is usually limited due to the low carbon/nitrogen(C/N) ratio.A common solution is to add external carbon sources,but amount of liquid is difficult to determine.Therefore,a combined wood-chip-framework substrate(with wood,slag and gravel) as a slow-release carbon source was constructed in baffled subsurface-flow constructed wetlands to overcome the problem.Results show that the removal rate of ammonia nitrogen(NH_4~+-N),total nitrogen(TN) and chemical oxygen demand(COD) could reach 37.5%-85%,57.4%-86%,32.4%-78%,respectively,indicating the combined substrate could diffuse sufficient oxygen for the nitrification process(slag and gravel zone) and provide carbon source for denitrification process(wood-chip zone).The nitrification and denitrification were determined according to the location of slag/gravel and wood-chip,respectively.Nitrogen removal was efficient at the steady phase before a shock loading using slag-wood-gravel combined substrate because of nitrification-denitrification process,while nitrogen removal was efficient under a shock loading with wood-slag-gravel combined substrate because of ANAMMOX process.This study provides a new idea for wetland treatment of high-strength nitrogen wastewater. 展开更多
关键词 Baffled constructed wetland combined substrate Wood-chip Nitrogen Removal
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部