Given the increasingly notable segmentation of underground space by existing subway tunnels, it is dif- ficult to effectively and adequately develop and utilize underground space in busy parts of a city. This study pr...Given the increasingly notable segmentation of underground space by existing subway tunnels, it is dif- ficult to effectively and adequately develop and utilize underground space in busy parts of a city. This study presents a combined construction technology that has been developed for use in underground spaces; it includes a deformation buffer layer, a special grouting technique, jump excavation by compart- ment, back-pressure portal frame technology, a reinforcement technique, and the technology of a steel portioning drum or plate. These technologies have been successfully used in practical engineering. The combined construction technology presented in this paper provides a new method of solving key techni- cal problems in underground spaces in effectively used cross-subway tunnels. As this technology has achieved significant economic and social benefits, it has valuable future applications.展开更多
青岛地铁2号线枣山路车站采用大拱脚拱盖法施工揭示的地质情况与原地质勘探结果不符,原支护体系无法满足地表沉降、拱顶沉降及主体结构受力的要求,因此提出含软弱夹层地铁车站拱盖-锚索-注浆组合支护体系。运用数值分析及稳定性增量的...青岛地铁2号线枣山路车站采用大拱脚拱盖法施工揭示的地质情况与原地质勘探结果不符,原支护体系无法满足地表沉降、拱顶沉降及主体结构受力的要求,因此提出含软弱夹层地铁车站拱盖-锚索-注浆组合支护体系。运用数值分析及稳定性增量的方法研究了注浆加固层厚度、锚索位置及条数、锚索初始预应力对支护效果的影响,确定了该组合支护体系最优的支护参数:注浆加固层厚度为3 m,拱脚及下断面中部各打设1根预应力为200 k N的锚索。展开更多
文摘Given the increasingly notable segmentation of underground space by existing subway tunnels, it is dif- ficult to effectively and adequately develop and utilize underground space in busy parts of a city. This study presents a combined construction technology that has been developed for use in underground spaces; it includes a deformation buffer layer, a special grouting technique, jump excavation by compart- ment, back-pressure portal frame technology, a reinforcement technique, and the technology of a steel portioning drum or plate. These technologies have been successfully used in practical engineering. The combined construction technology presented in this paper provides a new method of solving key techni- cal problems in underground spaces in effectively used cross-subway tunnels. As this technology has achieved significant economic and social benefits, it has valuable future applications.
文摘青岛地铁2号线枣山路车站采用大拱脚拱盖法施工揭示的地质情况与原地质勘探结果不符,原支护体系无法满足地表沉降、拱顶沉降及主体结构受力的要求,因此提出含软弱夹层地铁车站拱盖-锚索-注浆组合支护体系。运用数值分析及稳定性增量的方法研究了注浆加固层厚度、锚索位置及条数、锚索初始预应力对支护效果的影响,确定了该组合支护体系最优的支护参数:注浆加固层厚度为3 m,拱脚及下断面中部各打设1根预应力为200 k N的锚索。