For converter transformer, AC-DC combined electric field can trigger space charge accumulation on oil-impregnated pressboard interface. The accumulation of space charge on oil-pressboard interface can result in electr...For converter transformer, AC-DC combined electric field can trigger space charge accumulation on oil-impregnated pressboard interface. The accumulation of space charge on oil-pressboard interface can result in electric field distortion, trend to trigger surface discharge of barriers. This paper studied the influence of surface charge on flashover voltage of oil-impregnated pressboard under AC-DC combined electric field. The study finds that the flashover voltage of oil-pressboard interface under negative polarity DC superimposed AC electric field is higher than that.of positive DC superimposed AC voltage to form composite electric field. It was found that homopolar surface charge has been accumulated on the interface of oil-pressboard with positive or negative DC voltage through measuring surface potential by the electrostatic capacitive probe. The surface charge produced electric field in the opposite direction, which weakening the synthetic electric field strength. What's more, under the same conditions, the negative surface charge density oil-pressboard is much larger than the positive.展开更多
In recent years, Combined electro-thermal system has developed rapidly. In order to provide the initial data for the analysis of the combined electro-thermal system, a practical energy flow calculation method for the ...In recent years, Combined electro-thermal system has developed rapidly. In order to provide the initial data for the analysis of the combined electro-thermal system, a practical energy flow calculation method for the combined electro-thermal system is proposed in this paper. Based on the detailed analysis of the topology structure of the heating network and its hydraulic and thermodynamic model, the forward-backward sweep method for the heat flow of the heating network is established, which is more suitable for the actual radial heating network. The electric and thermal coupling model for heating source, such as thermoelectric unit and electric boiler is established, and the heat flow of heating network and the power flow of power grid are calculated orderly, thus a fast calculation method for the combined electro-thermal system is formed. What’s more, a combined electro-thermal system with two-stage peak-shaving electric boiler is used as the example system. This paper validates the effectiveness and rapidity of this method through the example system, and analyzes the influence for the energy flow of combined electro-thermal system caused by the operating parameters such as the installation location of electric boiler, the outlet water temperature of heat source and the outlet flow rate, etc.展开更多
Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles.Nowadays,people often drive a vehicle on fixed routes in their dail...Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles.Nowadays,people often drive a vehicle on fixed routes in their daily travels and accurate speed predictions of these routes are possible with random prediction and machine learning,but the prediction accuracy still needs to be improved.The prediction accuracy of traditional prediction algorithms is difficult to further improve after reaching a certain accuracy;problems,such as over fitting,occur in the process of improving prediction accuracy.The combined prediction model proposed in this paper can abandon the transitional dependence on a single prediction.By combining the two prediction algorithms,the fusion of prediction performance is achieved,the limit of the single prediction performance is crossed,and the goal of improving vehicle speed prediction performance is achieved.In this paper,an extraction method suitable for fixed route vehicle speed is designed.The application of Markov and back propagation(BP)neural network in predictions is introduced.Three new combined prediction methods,all named Markov and BP Neural Network(MBNN)combined prediction algorithm,are proposed,which make full use of the advantages of Markov and BP neural network algorithms.Finally,the comparison among the prediction methods has been carried out.The results show that the three MBNN models have improved by about 19%,28%,and 29%compared with the Markov prediction model,which has better performance in the single prediction models.Overall,the MBNN combined prediction models can improve the prediction accuracy by 25.3%on average,which provides important support for the possible optimization of plug-in hybrid electric vehicle energy consumption.展开更多
The charging of electric vehicles(EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based c...The charging of electric vehicles(EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based control algorithm to coordinate the charging of these vehicles, in order to minimize the costs. In such an optimization, the operational parameters of the distribution grid, to which the EVs are connected, are not considered. This can lead to violations of the technical constraints of the grid(e.g., undervoltage, phase unbalances); for example, because many vehicles start charging simultaneously when the price is low. An optimization that simultaneously takes the economic and technical aspects into account is complex, because it has to combine time-driven control at the market level with eventdriven control at the operational level. Diff erent case studies investigate under which circumstances the market-based control, which coordinates EV charging, conflicts with the operational constraints of the distribution grid. Especially in weak grids, phase unbalance and voltage issues arise with a high share of EVs. A low-level voltage droop controller at the charging point of the EV can be used to avoid many grid constraint violations, by reducing the charge power if the local voltage is too low. While this action implies a deviation from the cost-optimal operating point, it is shown that this has a very limited impact on the business case of an aggregator, and is able to comply with the technical distribution grid constraints, even in weak distribution grids with many EVs.展开更多
Combined power plant is widely used in large or medium surface vessel for its predominant performance. It is important to research on using combined power plant as electrical propulsion prime mover for developing the ...Combined power plant is widely used in large or medium surface vessel for its predominant performance. It is important to research on using combined power plant as electrical propulsion prime mover for developing the electric propulsion warship.This paper, designs a multi-module experiment-rig and introduces its composition, working principle and disposition scheme,and carried out the dynamic characteristic experiment of the GTD350 gas turbine.展开更多
We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of...We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of electron-LO phonon coupling. The changing relations between the ground-state energy of the bound polaron in the quantum well and the Coulomb bound potential, the electric field strength, and the well width are derived. The numerical results show that the ground-state energy increases with the increase of the electric field strength and the Coulomb bound potential and decreases as the well width increases.展开更多
Regarding the state's policy that gives a higher on-grid electricity price to natural gas CHP (combined heat and power) projects, this paper studies the effect of it on the operation of those projects by theoretic...Regarding the state's policy that gives a higher on-grid electricity price to natural gas CHP (combined heat and power) projects, this paper studies the effect of it on the operation of those projects by theoretical analysis and a case study. It concludes that on-grid electricity price on the high side, compared to heat price, will lead power plants to produce more electricity but less heat, thus causing decrease of the plants' thermal eff iciency and harm to energy saving of the whole society.展开更多
文摘For converter transformer, AC-DC combined electric field can trigger space charge accumulation on oil-impregnated pressboard interface. The accumulation of space charge on oil-pressboard interface can result in electric field distortion, trend to trigger surface discharge of barriers. This paper studied the influence of surface charge on flashover voltage of oil-impregnated pressboard under AC-DC combined electric field. The study finds that the flashover voltage of oil-pressboard interface under negative polarity DC superimposed AC electric field is higher than that.of positive DC superimposed AC voltage to form composite electric field. It was found that homopolar surface charge has been accumulated on the interface of oil-pressboard with positive or negative DC voltage through measuring surface potential by the electrostatic capacitive probe. The surface charge produced electric field in the opposite direction, which weakening the synthetic electric field strength. What's more, under the same conditions, the negative surface charge density oil-pressboard is much larger than the positive.
文摘In recent years, Combined electro-thermal system has developed rapidly. In order to provide the initial data for the analysis of the combined electro-thermal system, a practical energy flow calculation method for the combined electro-thermal system is proposed in this paper. Based on the detailed analysis of the topology structure of the heating network and its hydraulic and thermodynamic model, the forward-backward sweep method for the heat flow of the heating network is established, which is more suitable for the actual radial heating network. The electric and thermal coupling model for heating source, such as thermoelectric unit and electric boiler is established, and the heat flow of heating network and the power flow of power grid are calculated orderly, thus a fast calculation method for the combined electro-thermal system is formed. What’s more, a combined electro-thermal system with two-stage peak-shaving electric boiler is used as the example system. This paper validates the effectiveness and rapidity of this method through the example system, and analyzes the influence for the energy flow of combined electro-thermal system caused by the operating parameters such as the installation location of electric boiler, the outlet water temperature of heat source and the outlet flow rate, etc.
基金National Natural Science Foundation of China(Grant No.51775478)Hebei Provincial Natural Science Foundation of China(Grant Nos.E2016203173,E2020203078).
文摘Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles.Nowadays,people often drive a vehicle on fixed routes in their daily travels and accurate speed predictions of these routes are possible with random prediction and machine learning,but the prediction accuracy still needs to be improved.The prediction accuracy of traditional prediction algorithms is difficult to further improve after reaching a certain accuracy;problems,such as over fitting,occur in the process of improving prediction accuracy.The combined prediction model proposed in this paper can abandon the transitional dependence on a single prediction.By combining the two prediction algorithms,the fusion of prediction performance is achieved,the limit of the single prediction performance is crossed,and the goal of improving vehicle speed prediction performance is achieved.In this paper,an extraction method suitable for fixed route vehicle speed is designed.The application of Markov and back propagation(BP)neural network in predictions is introduced.Three new combined prediction methods,all named Markov and BP Neural Network(MBNN)combined prediction algorithm,are proposed,which make full use of the advantages of Markov and BP neural network algorithms.Finally,the comparison among the prediction methods has been carried out.The results show that the three MBNN models have improved by about 19%,28%,and 29%compared with the Markov prediction model,which has better performance in the single prediction models.Overall,the MBNN combined prediction models can improve the prediction accuracy by 25.3%on average,which provides important support for the possible optimization of plug-in hybrid electric vehicle energy consumption.
基金supported in part by the European Commission through the project P2P-Smartest:Peer to Peer Smart Energy Distribution Networks (H2020-LCE-2014-3,project 646469)
文摘The charging of electric vehicles(EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based control algorithm to coordinate the charging of these vehicles, in order to minimize the costs. In such an optimization, the operational parameters of the distribution grid, to which the EVs are connected, are not considered. This can lead to violations of the technical constraints of the grid(e.g., undervoltage, phase unbalances); for example, because many vehicles start charging simultaneously when the price is low. An optimization that simultaneously takes the economic and technical aspects into account is complex, because it has to combine time-driven control at the market level with eventdriven control at the operational level. Diff erent case studies investigate under which circumstances the market-based control, which coordinates EV charging, conflicts with the operational constraints of the distribution grid. Especially in weak grids, phase unbalance and voltage issues arise with a high share of EVs. A low-level voltage droop controller at the charging point of the EV can be used to avoid many grid constraint violations, by reducing the charge power if the local voltage is too low. While this action implies a deviation from the cost-optimal operating point, it is shown that this has a very limited impact on the business case of an aggregator, and is able to comply with the technical distribution grid constraints, even in weak distribution grids with many EVs.
文摘Combined power plant is widely used in large or medium surface vessel for its predominant performance. It is important to research on using combined power plant as electrical propulsion prime mover for developing the electric propulsion warship.This paper, designs a multi-module experiment-rig and introduces its composition, working principle and disposition scheme,and carried out the dynamic characteristic experiment of the GTD350 gas turbine.
文摘We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of electron-LO phonon coupling. The changing relations between the ground-state energy of the bound polaron in the quantum well and the Coulomb bound potential, the electric field strength, and the well width are derived. The numerical results show that the ground-state energy increases with the increase of the electric field strength and the Coulomb bound potential and decreases as the well width increases.
文摘Regarding the state's policy that gives a higher on-grid electricity price to natural gas CHP (combined heat and power) projects, this paper studies the effect of it on the operation of those projects by theoretical analysis and a case study. It concludes that on-grid electricity price on the high side, compared to heat price, will lead power plants to produce more electricity but less heat, thus causing decrease of the plants' thermal eff iciency and harm to energy saving of the whole society.