期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Growth of a-Plane GaN Films on r-Plane Sapphire by Combining Metal Organic Vapor Phase Epitaxy with the Hydride Vapor Phase Epitaxy
1
作者 姜腾 许晟瑞 +3 位作者 张进成 林志宇 蒋仁渊 郝跃 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期173-176,共4页
Hydride vapor phase epitaxy (HVPE) is utilized to grow nonpolar a-plane GaN layers on r-plane sapphire templates prepared by metal organic vapor phase epitaxy (MOVPE). The surface morphology and microstructures of... Hydride vapor phase epitaxy (HVPE) is utilized to grow nonpolar a-plane GaN layers on r-plane sapphire templates prepared by metal organic vapor phase epitaxy (MOVPE). The surface morphology and microstructures of the samples are characterized by atomic force microscopy. The full width at half maximum (FWHM) of the HVPE sample shows a W-shape and that of the MOVPE sample shows an M-shape plane with the degree of 0 in the high-resolution x-ray diffraction (HRXRD) results. The surface morphology attributes to this significant anisotropic. HRXRD reveals that there is a significant reduction in the FWHM, both on-axis and off-axis for HVPE GaN are compared with the MOVPE template. The decrease of the FWHM of E2 (high) Raman scat tering spectra further indicates the improvement of crystal quality after HVPE. By comparing the results of secondary- ion-mass spectroscope and photoluminescence spectrum of the samples grown by HVPE and MOVPE, we propose that C-involved defects are originally responsible for the yellow luminescence. 展开更多
关键词 MOVPE GAN Growth of a-Plane GaN films on r-Plane Sapphire by Combining Metal Organic Vapor Phase Epitaxy with the Hydride Vapor Phase Epitaxy
下载PDF
Investigation of the Conjugate Heat Transfer and Flow Field for a Flat Plate with Combined Film and Impingement Cooling 被引量:3
2
作者 FU Jinglun CAO Ying +1 位作者 ZHANG Chao ZHU Junqiang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第4期955-971,共17页
Film cooling combined with internal impingement cooling is one of the most effective technologies to protect the gas turbine vanes and blades from the hot gas. In this study, conjugate heat transfer CFD study was unde... Film cooling combined with internal impingement cooling is one of the most effective technologies to protect the gas turbine vanes and blades from the hot gas. In this study, conjugate heat transfer CFD study was undertaken for a flat plate with combined film cooling and impingement cooling. An experiment on conjugate heat transfer of a flat plate with combined film and impingement cooling was performed to validate the code. Then the effects of several parameters including Biot number, blowing ratio, film hole shape and impingement hole diameter on the overall cooling effectiveness were numerically studied. The results show that for a specific combined cooling scheme and a given blowing ratio, the coolant potential can be reasonably allocated to the internal and the external cooling to achieve the overall cooling effectiveness. As the blowing ratio increases, the overall cooling effectiveness trends to reach a maximum value. For different film hole geometrical, the maximum values of the overall cooling effectiveness at high blowing ratio approximate to the same value. At a given mass flow rate of coolant, the increase of the impingement hole diameter leads to the reduction of the overall cooling effectiveness. 展开更多
关键词 conjugate heat transfer combined film and impingement cooling overall cooling effectiveness Biot number blowing ratio
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部