期刊文献+
共找到1,623篇文章
< 1 2 82 >
每页显示 20 50 100
Performance of Gas-Steam Combined Cycle Cogeneration Units Influenced by Heating Network Terminal Steam Parameters
1
作者 Guanglu Xie Zhimin Xue +5 位作者 Bo Xiong Yaowen Huang Chaoming Chen Qing Liao Cheng Yang Xiaoqian Ma 《Energy Engineering》 EI 2024年第6期1495-1519,共25页
The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and p... The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak. 展开更多
关键词 Gas-steam combined cycle cogeneration of heating and power steam network inverse problem operating performance
下载PDF
A Financial Approach to Evaluate an Optimized Combined Cooling, Heat and Power System 被引量:20
2
作者 Shahab Bahrami Farahbakhsh Safe 《Energy and Power Engineering》 2013年第5期352-362,共11页
Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits su... Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits such as lower electricity generation price. In Iran among all type of DGs, because of wide natural gas network infrastructure and several incentives that government legislated to support combined cooling, heat and power (CCHP) investors, this type of technology is more prevalent in comparison with other technologies. Between existing CCHP technologies, certain economic choices are to be taken into account. For different buildings with different load curves, suitable size and operation of CCHP should be calculated to make the project more feasible. If CCHP does not well suited for a position, then the whole energy efficiency would be plunged significantly. In this paper, a model to find the optimal size and operation of CCHP and auxiliary boiler for any users is proposed by considering an integrated view of electricity and natural gas network using GAMS software. Then this method is applying for a hospital in Tehran as a real case study. Finally, by applying COMFAR III software, useful financial parameters and sensitivity analysis are calculated. 展开更多
关键词 combined COOLING heat and power (Cchp) Energy HUB Optimal SIZE FINANCIAL Analysis
下载PDF
Simulation and performance analysis of organic Rankine cycle combined heat and power system
3
作者 刘玉兰 曹政 +1 位作者 陈九法 熊健 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期489-495,共7页
To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state.... To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state. In the system,R245 fa was selected as the working fluid. A scroll expander was modeled with empirical isentropic expansion efficiency.Plate heat exchangers were selected as the evaporator and the condenser, and detailed heat transfer models were programmed for both one-phase and two-phase regions. Simulations were carried out at seven different heat source temperatures( 80,90, 100, 110, 120, 130, 140 ℃) in combination with eight different heat sink temperatures( 20, 25, 30, 35, 40, 45, 50,55 ℃). Results showthat in the ORC without an internal heat exchanger( IHE), the optimum cycle efficiencies are in the range of 7. 0% to 7. 3% when the temperature differences between the heat source and heat sink are in the range of 70 to90 ℃. Simulations on CHP reveal that domestic hot water can be produced when the heat sink inlet temperature is higher than40 ℃, and the corresponding exergy efficiency and overall thermal efficiency are 29% to 56% and 87% to 90% higher than those in the non-CHP ORC, respectively. It is found that the IHE has little effect on the improvement of work output and efficiencies for the CHP ORC. 展开更多
关键词 organic Rankine cycle combined heat and power cycle efficiency exergy efficiency thermal efficiency
下载PDF
Solution of Combined Heat and Power Economic Dispatch Problem Using Direct Optimization Algorithm 被引量:1
4
作者 Dedacus N. Ohaegbuchi Olaniyi S. Maliki +1 位作者 Chinedu P. A. Okwaraoka Hillary Erondu Okwudiri 《Energy and Power Engineering》 CAS 2022年第12期737-746,共10页
This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) pr... This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided. 展开更多
关键词 Economic Dispatch Lagrange Multiplier Algorithm combined heat and power Constraints and Objective Functions Optimal Dispatch
下载PDF
Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power 被引量:4
5
作者 Feng Zhao Chenghui Zhang Bo Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第4期385-393,共9页
This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power U+0028 CCHP U+0029 with storage systems. Initially, the initiative ... This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power U+0028 CCHP U+0029 with storage systems. Initially, the initiative optimization operation strategy of CCHP system in the cooling season, the heating season and the transition season was formulated. The energy management of CCHP system was optimized by the multi-objective optimization model with maximum daily energy efficiency, minimum daily carbon emissions and minimum daily operation cost based on the proposed initiative optimization operation strategy. Furthermore, the pareto optimal solution set was solved by using the niche particle swarm multi-objective optimization algorithm. Ultimately, the most satisfactory energy management scheme was obtained by using the technique for order preference by similarity to ideal solution U+0028 TOPSIS U+0029 method. A case study of CCHP system used in a hospital in the north of China validated the effectiveness of this method. The results showed that the satisfactory energy management scheme of CCHP system was obtained based on this initiative optimization operation strategy and multi-objective energy management method. The CCHP system has achieved better energy efficiency, environmental protection and economic benefits. © 2014 Chinese Association of Automation. 展开更多
关键词 CARBON COOLING Cooling systems Energy efficiency Energy management heatING Multiobjective optimization OPTIMIZATION Pareto principle
下载PDF
Biomass Combined Heat and Power Generation for Anticosti Island: A Case Study
6
作者 Theleli Abbas Mohamad Issa +1 位作者 Adrian Ilinca Ali El-Ali 《Journal of Power and Energy Engineering》 2020年第3期64-87,共24页
Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the ste... Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the steam cycle which in turn generates electricity from the generator connected to the steam turbine. In addition, heat from the process is supplied to a district heating system. The heat can be extracted from the system in a number of ways, by using a back-pressure steam turbine, an extraction steam turbine or by extracting heat directly from the boiler. The objective of the paper is the design, modeling and simulation of such CHP plant. The plant should be sized for providing electric-ity and heat for the Anticosti Island community in Quebec. 展开更多
关键词 chp (combined heat and power) Anticosti ISLAND COGENERATION heating Network RET (Renewable Energy Technologies) FEASIBILITY
下载PDF
Thermo-economic Investigation of an Enhanced Geothermal System Organic Rankine Cycle and Combined Heating and Power System
7
作者 WANG Lingbao BU Xianbiao LI Huashan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第6期1958-1966,共9页
As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon... As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon neutralization. The main challenge for EGSs is to reduce the investment cost. In the present study, thermo-economic investigations of EGS projects are conducted. The effects of geofluid mass flow rate, wellhead temperature and loss rate on the thermo-economic performance of the EGS organic Rankine cycle(ORC) are studied. A performance comparison between EGS-ORC and the EGS combined heating and power system(CHP) is presented. Considering the CO_(2)emission reduction benefits, the influence of carbon emission trading price on the levelized cost of energy(LCOE) is also presented. It is indicated that the geofluid mass flow rate is a critical parameter in dictating the success of a project. Under the assumed typical working conditions, the LCOE of EGS-ORC and EGS-CHP systems are 24.72 and 16.1 cents/k Wh, respectively. Compared with the EGS-ORC system, the LCOE of the EGS-CHP system is reduced by 35%. EGS-CHP systems have the potential to be economically viable in the future. With carbon emission trading prices of 12.76 USD/ton, the LCOE can be reduced by approximately 8.5%. 展开更多
关键词 enhanced geothermal system organic Rankine cycle combined heating and power system thermo-economic investigation carbon emission reduction
下载PDF
Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region
8
作者 Jean-Ann James Valerie M. Thomas +2 位作者 Arka Pandit Duo Li John C. Crittenden 《Engineering》 SCIE EI 2016年第4期470-480,共11页
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po... The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings. 展开更多
关键词 combined cooling heating and power (Cchp) Air-cooled microturbines Distributed energy generation Water for energy production Net metering
下载PDF
Comparative Assessment of Combined-Heat-and-Power Performance of Small-Scale Aero-Derivative Gas Turbine Cycles
9
作者 Barinyima Nkoi Barinaadaa Thaddeus Lebele-Alawa 《Journal of Power and Energy Engineering》 2015年第9期20-32,共13页
This paper considers comparative assessment of combined-heat-and-power (CHP) performance of three small-scale aero-derivative industrial gas turbine cycles in the petrochemical industry. The bulk of supposedly waste e... This paper considers comparative assessment of combined-heat-and-power (CHP) performance of three small-scale aero-derivative industrial gas turbine cycles in the petrochemical industry. The bulk of supposedly waste exhaust heat associated with gas turbine operation has necessitated the need for CHP application for greater fuel efficiency. This would render gas turbine cycles environ-mentally-friendly, and more economical. However, choosing a particular engine cycle option for small-scale CHP requires information about performances of CHP engine cycle options. The investigation encompasses comparative assessment of simple cycle (SC), recuperated (RC), and intercooled-recuperated (ICR) small-scale aero-derivative industrial gas turbines combined-heat-and-power (SS-ADIGT-CHP). Small-scale ADIGT engines of 1.567 MW derived from helicopter gas turbines are herein analysed in combined-heat-and-power (CHP) application. It was found that in this category of ADIGT engines, better CHP efficiency is exhibited by RC and ICR cycles than SC engine. The CHP efficiencies of RC, ICR, and SC small-scale ADIGT-CHP cycles were found to be 71%, 60%, and 56% respectively. Also, RC engine produces the highest heat recovery steam generator (HRSG) duty. The HRSG duties were found to be 3171.3 kW for RC, 2621.6 kW for ICR, and 3063.1 kW for SC. These outcomes would actually meet the objective of aiding informed preliminary choice of small-scale ADIGT engine cycle options for CHP application. 展开更多
关键词 Aero-Derivative Gas Turbines combined-heat-and-power heat Recovery Steam GENERATOR chp Efficiency
下载PDF
Parametric optimization of power system for a micro-CCHP system 被引量:2
10
作者 李应林 张小松 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期297-301,共5页
The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal m... The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal model of such an engine above,a mathematical model of a refitted engine is provided.The boundary of the corresponding economical zone is further demarcated,and the optimal operating curve and the operating point of the engine are analyzed.Then,the energy transforming models of the power system are established in the mode of cooling,heating and power(MCHP),the mode of heating and power(MHP)and the mode of electricity powering(MEP).The parameter matching of the power system is optimized according to the transmission ratios of the gear box in the power distribution system.The results show that,in the MCHP,the speed transmission ratio of the engine to the gear box(ies)and the speed transmission ratio of the motor to the gear box(ims)are defined as 2.9 and 1,respectively;in the MHP,when the demand load of the power system is less than the low critical load of the economical zone,the speed transmission ratio of the motor to the engine(ime)is equal to 1,and when the demand load of the power system exceeds the low critical load of the economical zone,ime equals 0.85;in the MEP,the optimal value of ims is defined as 2.5. 展开更多
关键词 combined cooling heating and power distributed energy supply battery bank ENGINE
下载PDF
基于CHP机组碳排放分析的综合能源系统低碳调度优化方法 被引量:1
11
作者 李家桐 谢宁 +1 位作者 王承民 熊康 《智慧电力》 北大核心 2024年第6期31-37,83,共8页
针对现有研究对于热电联产(CHP)机组碳排放计算不符合实际物理特性的问题,提出了基于CHP碳排放分析的综合能源系统(IES)低碳调度优化方法。从CHP机组内部结构入手,分析CHP机组内部各部分之间能量的传递过程,绘制CHP机组功率与碳排流向图... 针对现有研究对于热电联产(CHP)机组碳排放计算不符合实际物理特性的问题,提出了基于CHP碳排放分析的综合能源系统(IES)低碳调度优化方法。从CHP机组内部结构入手,分析CHP机组内部各部分之间能量的传递过程,绘制CHP机组功率与碳排流向图,列写各个部分的功率平衡方程,得到CHP机组排放废气的等效热功率;计及碳排放量与废气排放速率的关系,结合废气排放的热力学方程,得到CHP机组废气排放速率与输入气流量及输出功率的关系;提出基于CHP机组碳排放分析的IES低碳调度优化模型,以总运行成本最小为目标,求解IES低碳调度优化结果;通过算例分析不同CHP机组运行方式下的优化调度结果,并与现有方法进行对比,验证了所提模型在降低碳排放方面的有效性。 展开更多
关键词 热电联产机组 综合能源系统 碳排放分析 调度优化
下载PDF
绿证与改进型阶梯式碳交易互动机制下的CHP系统低碳经济调度研究
12
作者 刘海涛 刘杨 +2 位作者 荀汉龙 金旭冉 陈佳艺 《电测与仪表》 北大核心 2024年第12期144-155,共12页
为了进一步降低热电联产型源荷系统的碳排放量,同时兼顾经济效益,文章改进了普通阶梯式碳交易的交易模型,提出了一种绿证与改进型阶梯式碳交易互动机制下的CHP型源荷系统低碳经济调度策略。构建热电联供型能源系统模型,确定能源测、转... 为了进一步降低热电联产型源荷系统的碳排放量,同时兼顾经济效益,文章改进了普通阶梯式碳交易的交易模型,提出了一种绿证与改进型阶梯式碳交易互动机制下的CHP型源荷系统低碳经济调度策略。构建热电联供型能源系统模型,确定能源测、转换侧、负荷侧模型,同时构建需求响应机制;在数学模型的基础上构建双层调度模型,上层模型是改进型阶梯式碳交易优化模型,利用差分进化算法来实现阶梯式碳交易参数自适应变化;下层源荷系统调度仿真模型,以系统运行成本为目标函数,耦合了碳交易机制和绿证策略,实现直接、间接同时减排,同时利用Cplex求解器进行最优化求解。最后,建立四种典型场景,对比分析得出所提策略能显著降低碳排放量,同时具有较好的经济效益,能够为源荷系统低碳经济调度提供参考。 展开更多
关键词 热电联产型源荷系统 改进型阶梯式碳交易 绿证 互动机制 低碳经济调度
下载PDF
Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling,Heating and Power System
13
作者 LIU Jiejie LI Yao +1 位作者 MENG Xianyang WU Jiangtao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期931-950,共20页
The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a mult... The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a multi-objective optimization model based on the life cycle assessment(LCA)method for the optimal design of hybrid solar and biomass system.The life-cycle process of the poly-generation system is divided into six phases to analyze energy consumption and greenhouse gas emissions.The comprehensive performances of the hybrid system are optimized by incorporating the evaluation criteria,including environmental impact in the whole life cycle,renewable energy contribution and economic benefit.The non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)with the technique for order preference by similarity to ideal solution(TOPSIS)method is employed to search the Pareto frontier result and thereby achieve optimal performance.The developed optimization methodology is used for a case study in an industrial park.The results indicate that the best performance from the optimized hybrid system is reached with the environmental impact load reduction rate(EILRR)of 46.03%,renewable energy contribution proportion(RECP)of 92.73%and annual total cost saving rate(ATCSR)of35.75%,respectively.By comparing pollutant-eq emissions of different stages,the operation phase emits the largest pollutant followed by the phase of raw material acquisition.Overall,this study reveals that the proposed multi-objective optimization model integrated with LCA method delivers an alternative path for the design and optimization of more sustainable CCHP system. 展开更多
关键词 combined cooling heating and power system solar-biomass multi-objective optimization life cycle assessment optimal design
原文传递
Robust optimal dispatch strategy of integrated energy system considering CHP-P2G-CCS
14
作者 Bin Zhang Yihui Xia Xiaotao Peng 《Global Energy Interconnection》 EI CSCD 2024年第1期14-24,共11页
Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model... Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model considering P2G and carbon capture systems,and a two-stage robust optimization model of the electricity-heat-gascold integrated energy system was developed.First,a CHP model considering the P2G and carbon capture system was established,and the electric-thermal coupling characteristics and P2G capacity constraints of the model were derived,which proved that the model could weaken the electric-thermal coupling characteristics,increase the electric power regulation range,and reduce carbon emissions.Subsequently,a two-stage robust optimal scheduling model of an IES was constructed,in which the objective function in the day-ahead scheduling stage was to minimize the start-up and shutdown costs.The objective function in the real-time scheduling stage was to minimize the equipment operating costs,carbon emission costs,wind curtailment,and solar curtailment costs,considering multiple uncertainties.Finally,after the objective function is linearized with a ψ-piecewise method,the model is solved based on the C&CG algorithm.Simulation results show that the proposed model can effectively absorb renewable energy and reduce the total cost of the system. 展开更多
关键词 combined heat and power power-to-gas Carbon capture system Integrated energy system Robust optimization
下载PDF
并网且上网模式下含复合储能CCHP系统能量管理策略优化研究
15
作者 陈程 林仕立 +1 位作者 胡安信 张先勇 《储能科学与技术》 CAS CSCD 北大核心 2024年第11期3981-3992,共12页
冷热电联供(combined cooling heating and power, CCHP)系统是工业产业园区、建筑用户能源利用过程实现双碳目标的重要举措。针对CCHP系统产用能不平衡、设备耦合相关、并网且上网模式等影响,本文构建了含电池储能系统和水箱蓄热系统的... 冷热电联供(combined cooling heating and power, CCHP)系统是工业产业园区、建筑用户能源利用过程实现双碳目标的重要举措。针对CCHP系统产用能不平衡、设备耦合相关、并网且上网模式等影响,本文构建了含电池储能系统和水箱蓄热系统的CCHP系统,并以运行成本和燃料消耗量为目标,建立CCHP系统能量管理策略的多目标优化函数;在此基础上,重点考虑约束条件和拥挤度算子对非支配排序遗传算法(nondominated sorting genetic algorithm-Ⅱ, NSGA-Ⅱ)搜索性能的影响,并利用改进型NSGA-Ⅱ算法实现CCHP系统能量管理策略的优化求解。结果表明:在并网且上网模式下,含复合储能CCHP系统相比无储能CCHP系统,夏季典型日的日运行成本和燃料消耗分别可节约0.89%和2.11%,冬季典型日可分别节约27.70%和7.30%,年运行成本和年总能量消耗则分别可减少11.11%和6.06%,可知基于改进型NSGA-Ⅱ算法所获得的含复合储能CCHP系统能量管理策略具有较好的能量调控性能。 展开更多
关键词 冷热电联供 并网且上网 复合储能 改进型NSGA-Ⅱ算法
下载PDF
基于改进MOEAD算法的CCHP系统运行优化
16
作者 汪永康 黄伟 《计算机仿真》 2024年第6期114-119,128,共7页
通过综合考虑冷热电联供(CCHP)系统中各类约束条件,基于夏冬两季典型日负荷需求曲线,构建了吸收式制冷机、燃气内燃机和燃气锅炉等主要机组设备模型。针对区域内系统经济性与环保性两者的协调优化问题,提出一种改进的基于分解的多目标... 通过综合考虑冷热电联供(CCHP)系统中各类约束条件,基于夏冬两季典型日负荷需求曲线,构建了吸收式制冷机、燃气内燃机和燃气锅炉等主要机组设备模型。针对区域内系统经济性与环保性两者的协调优化问题,提出一种改进的基于分解的多目标进化算法(multi-objective optimization algorithm based on Decomposition, MOEA/D)对系统模型进行多目标优化求解。最后以某商业区能源站为实际算例,通过Matlab进行仿真。仿真结果显示所提出的系统优化方法,能使该能源站的运行更加经济与高效。 展开更多
关键词 基于分解的多目标进化算法 冷热电联供 多目标优化 典型日
下载PDF
Feasibility Analysis of the Operation Strategies for Combined Cooling, Heating and Power Systems (CCHP) based on the Energy-Matching Regime 被引量:1
17
作者 FENG Lejun DAI Xiaoye +1 位作者 MO Junrong SHI Lin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第5期1149-1164,共16页
Although numerous studies have considered the two traditional operation strategies:following the electric load(FEL)and following the thermal load(FTL),for combined cooling,heating,and power(CCHP)systems in different c... Although numerous studies have considered the two traditional operation strategies:following the electric load(FEL)and following the thermal load(FTL),for combined cooling,heating,and power(CCHP)systems in different case studies,there are limited theoretical studies on the quantification methods to assess the feasibility of these two strategies in different load demands scenarios.Therefore,instead of a case study,we have undertaken a theoretical analysis of the suitable application scenarios for FEL and FTL strategies based on the energy-matching performance between systems'provision and users'demands.To compare the calculation models of energy saving rate(ESR)for FEL and FTL strategies in the left and right sub-regions of the energy-supply curve,a comprehensive parameter(^)that combines three inherently influential factors(off-design operation parameter,energy-matching parameter,and install capacity coefficient)is defined to determine the optimal installed capacity and feasibility of FEL or FTL strategies quantitatively.The results indicate that greater value of x contribute to a better energy saving performance,and FEL strategy shows better performance than FTL in most load demands scenarios,and the optimal installed capacity occurs when the load demand points were located in different regions of the energy-supply curve.Finally,taking a hotel in Beijing as an example,the value of the optimal install capacity coefficient is 0.845 and the FEL strategy is also suggested,and compared to the maximum install capacity,the average values of the ESR on a typical summer day,transition season,and winter can be enhanced by 3.9%,8.8%,and 1.89%,respectively. 展开更多
关键词 combined cooling heating and power systems(Cchp) energy-matching performance operation strategies comprehensive parameter energy saving performance
原文传递
1 kW家庭PEMFC-CHP系统热量分析 被引量:2
18
作者 由宏新 招聪 +2 位作者 徐立军 官国清 阿布里提 《电源技术》 CAS CSCD 北大核心 2018年第4期509-512,553,共5页
为考核微型燃料电池热-电联供系统的热量利用程度,采集了一年中日本某家庭使用的1 k W质子交换膜燃料电池(PEMFC)的微型热-电联产系统各单元的数据,进行统计与分析,从热量利用的角度,计算各单元热量输入输出效率。结果表明,储热水箱散... 为考核微型燃料电池热-电联供系统的热量利用程度,采集了一年中日本某家庭使用的1 k W质子交换膜燃料电池(PEMFC)的微型热-电联产系统各单元的数据,进行统计与分析,从热量利用的角度,计算各单元热量输入输出效率。结果表明,储热水箱散热与输运管道散热是系统热损失较多的薄弱环节。相关统计与分析,对改进类似热-电联产系统,进一步提高能源综合利用效率具有参考意义。 展开更多
关键词 质子交换膜燃料电池 热-电联供 热量分析
下载PDF
上海地区不同类型建筑的CCHP-ORC系统评价与分析 被引量:11
19
作者 刘豪 朱彤 张涛 《中国电机工程学报》 EI CSCD 北大核心 2016年第12期3198-3205,共8页
将传统的分供能源(SP)系统作为基准,以一次能源消耗量、年总费用和碳排放量构成的综合指标为优化目标,根据相关约束条件建立线性优化模型,分析评价了含有机朗肯循环(ORC)的冷热电联供(CCHP)能源系统在不同建筑类型的应用。对上海5种典... 将传统的分供能源(SP)系统作为基准,以一次能源消耗量、年总费用和碳排放量构成的综合指标为优化目标,根据相关约束条件建立线性优化模型,分析评价了含有机朗肯循环(ORC)的冷热电联供(CCHP)能源系统在不同建筑类型的应用。对上海5种典型建筑进行研究,计算结果表明,相对于分供系统,商业和办公建筑等在使用CCHP系统后可提高能源系统的综合性能,但由于这种建筑的特点是热电比低、用电量大,内燃机在过渡季节会有大量过剩的余热无法合理利用,加入ORC系统后,能源系统的综合性能会有明显的改善;对于酒店和医院等热电比高、用热(冷)量大等特点的建筑,ORC系统的加入,对原有CCHP系统的综合性能影响较小。 展开更多
关键词 分布式能源系统 冷热电联供 有机朗肯循环 热电比 优化设计 评价指标
下载PDF
考虑压降的开式布雷顿CHP装置性能优化 被引量:2
20
作者 杨博 陈林根 +1 位作者 王文华 孙丰瑞 《机械工程学报》 EI CAS CSCD 北大核心 2016年第10期166-175,共10页
考虑工质在流动过程中的压降不可逆性,建立开式简单布雷顿热电联产装置的有限时间热力学模型。以可用能率、火用输出率、利润率、第一定律效率和火用效率为目标研究装置的性能。通过Matlab数值计算,在无燃料消耗和装置尺寸约束下,优化... 考虑工质在流动过程中的压降不可逆性,建立开式简单布雷顿热电联产装置的有限时间热力学模型。以可用能率、火用输出率、利润率、第一定律效率和火用效率为目标研究装置的性能。通过Matlab数值计算,在无燃料消耗和装置尺寸约束下,优化了压气机进口相对压降,得到了最优可用能率、火用输出率和利润率,进一步优化压比,得到了最大火用输出率和利润率;在有约束条件下,优化压气机进口相对压降,得到了最优第一定律效率和火用效率,同时得到了各部件最佳的流通面积分配,进一步优化压比,得到了最大第一定律效率和火用效率。研究设计参数对装置最优性能的影响,发现分别存在最佳的供热温度使火用输出率、利润率和火用效率取得双重最大值。通过比较发现按最大火用输出率设计能使装置具有较大的可用能率和较低的压比,按最大利润率设计能使装置具有较大的第一定律效率和火用效率以及较低的燃料和空气消耗。 展开更多
关键词 开式简单布雷顿热电联产装置 有限时间热力学 可用能率 火用输出率 利润率 第一定律效率 火用效率
下载PDF
上一页 1 2 82 下一页 到第
使用帮助 返回顶部