In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is ...In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.展开更多
The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and p...The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak.展开更多
On J-TEXT,the temporal evolution of heat flux distribution on the high-field side(HFS)divertor plate has been measured by an infrared(IR)camera during the plasma operation with an island divertor configuration.In expe...On J-TEXT,the temporal evolution of heat flux distribution on the high-field side(HFS)divertor plate has been measured by an infrared(IR)camera during the plasma operation with an island divertor configuration.In experiments,the island divertor configuration is an edge magnetic island chain structure surrounded by stochastic layers,which can be induced by resonant magnetic perturbations(RMPs).The experimental results show that the heat flux distribution on the HFS target plate depends significantly on the edge magnetic topology.Furthermore,the impact of hydrogen fueling using supersonic molecular beam injection(SMBI)on the divertor heat flux distributions is studied on J-TEXT with an island divertor configuration.It has been observed that power detachment can be achieved when the radiation front approaches the last closed flux surface(LCFS)after each SMBI pulse.This result may provide a method of access for divertor detachment on a fusion device with a three-dimensional(3D)boundary magnetic structure.展开更多
Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching m...Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed.Firstly,the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output,obtains the optimal output value under the economic conditions of each new energy station,and then obtains the maximum consumption space of the new energy station.Secondly,based on the optimization results of the first stage,the second stage dispatching model uses the dispatching method of fuzzy comprehensive ranking priority to prioritize the new energy stations,and then makes a fair allocation to the dispatching of the wind and solar stations.Finally,the analysis of a specific example shows that themodel can take into account the fairness of active power distribution of new energy stations on the basis of ensuring the economy of system operation,make full use of the consumption space,and realize the medium and long-term fairness distribution of dispatching plan.展开更多
To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state....To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state. In the system,R245 fa was selected as the working fluid. A scroll expander was modeled with empirical isentropic expansion efficiency.Plate heat exchangers were selected as the evaporator and the condenser, and detailed heat transfer models were programmed for both one-phase and two-phase regions. Simulations were carried out at seven different heat source temperatures( 80,90, 100, 110, 120, 130, 140 ℃) in combination with eight different heat sink temperatures( 20, 25, 30, 35, 40, 45, 50,55 ℃). Results showthat in the ORC without an internal heat exchanger( IHE), the optimum cycle efficiencies are in the range of 7. 0% to 7. 3% when the temperature differences between the heat source and heat sink are in the range of 70 to90 ℃. Simulations on CHP reveal that domestic hot water can be produced when the heat sink inlet temperature is higher than40 ℃, and the corresponding exergy efficiency and overall thermal efficiency are 29% to 56% and 87% to 90% higher than those in the non-CHP ORC, respectively. It is found that the IHE has little effect on the improvement of work output and efficiencies for the CHP ORC.展开更多
Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits su...Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits such as lower electricity generation price. In Iran among all type of DGs, because of wide natural gas network infrastructure and several incentives that government legislated to support combined cooling, heat and power (CCHP) investors, this type of technology is more prevalent in comparison with other technologies. Between existing CCHP technologies, certain economic choices are to be taken into account. For different buildings with different load curves, suitable size and operation of CCHP should be calculated to make the project more feasible. If CCHP does not well suited for a position, then the whole energy efficiency would be plunged significantly. In this paper, a model to find the optimal size and operation of CCHP and auxiliary boiler for any users is proposed by considering an integrated view of electricity and natural gas network using GAMS software. Then this method is applying for a hospital in Tehran as a real case study. Finally, by applying COMFAR III software, useful financial parameters and sensitivity analysis are calculated.展开更多
This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) pr...This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided.展开更多
As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon...As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon neutralization. The main challenge for EGSs is to reduce the investment cost. In the present study, thermo-economic investigations of EGS projects are conducted. The effects of geofluid mass flow rate, wellhead temperature and loss rate on the thermo-economic performance of the EGS organic Rankine cycle(ORC) are studied. A performance comparison between EGS-ORC and the EGS combined heating and power system(CHP) is presented. Considering the CO_(2)emission reduction benefits, the influence of carbon emission trading price on the levelized cost of energy(LCOE) is also presented. It is indicated that the geofluid mass flow rate is a critical parameter in dictating the success of a project. Under the assumed typical working conditions, the LCOE of EGS-ORC and EGS-CHP systems are 24.72 and 16.1 cents/k Wh, respectively. Compared with the EGS-ORC system, the LCOE of the EGS-CHP system is reduced by 35%. EGS-CHP systems have the potential to be economically viable in the future. With carbon emission trading prices of 12.76 USD/ton, the LCOE can be reduced by approximately 8.5%.展开更多
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po...The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.展开更多
Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the ste...Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the steam cycle which in turn generates electricity from the generator connected to the steam turbine. In addition, heat from the process is supplied to a district heating system. The heat can be extracted from the system in a number of ways, by using a back-pressure steam turbine, an extraction steam turbine or by extracting heat directly from the boiler. The objective of the paper is the design, modeling and simulation of such CHP plant. The plant should be sized for providing electric-ity and heat for the Anticosti Island community in Quebec.展开更多
This research proposes a synergistic meta-heuristic algorithm for solving the extreme operational complications of combined heat and power economic dispatch problem towards the advantageous economic outcomes on the co...This research proposes a synergistic meta-heuristic algorithm for solving the extreme operational complications of combined heat and power economic dispatch problem towards the advantageous economic outcomes on the cost of generation. The combined heat and power (CHP) is a system that provides electricity and thermal energy concurrently. For its extraordinary efficiency and significant emission reduction, it is considered a promising energy prospect. The broad application of combined heat and power units requires the joint dispatch of power and heating systems, in which the modelling of combined heat and power units plays a vital role. The present research employs the genetic optimization algorithm to evaluate the cost function, heat and power dispatch values encountered in a system with simple cycle cogeneration unit and quadratic cost function. The system was first modeled to determine the various parameters of combined heat and power units towards solving its economic dispatch problem directly. In order for modelling to be done, a general structure of combined heat and power must be defined. The test system considered consists of four units: two conventional power units, one combined heat and power unit and one heat-only unit. The algorithm was applied to test system while taking into account the power and heat units, bounds of the units and feasible operation region of cogeneration unit. Output decision variables of 4-unit test systems plus cost function from Genetic Algorithm (GA), was determined using appropriate codes. The proposed algorithm produced a well spread and diverse optimal solution and also converged reasonably to the actual optimal solution in 51 iterations. The result obtained compared favourably with that obtained with the direct solution algorithm discussed in a previous paper. We conclude that the genetic algorithm is quite efficient in dealing with non-convex and constrained combined heat and power economic dispatch problem.展开更多
This paper considers comparative assessment of combined-heat-and-power (CHP) performance of three small-scale aero-derivative industrial gas turbine cycles in the petrochemical industry. The bulk of supposedly waste e...This paper considers comparative assessment of combined-heat-and-power (CHP) performance of three small-scale aero-derivative industrial gas turbine cycles in the petrochemical industry. The bulk of supposedly waste exhaust heat associated with gas turbine operation has necessitated the need for CHP application for greater fuel efficiency. This would render gas turbine cycles environ-mentally-friendly, and more economical. However, choosing a particular engine cycle option for small-scale CHP requires information about performances of CHP engine cycle options. The investigation encompasses comparative assessment of simple cycle (SC), recuperated (RC), and intercooled-recuperated (ICR) small-scale aero-derivative industrial gas turbines combined-heat-and-power (SS-ADIGT-CHP). Small-scale ADIGT engines of 1.567 MW derived from helicopter gas turbines are herein analysed in combined-heat-and-power (CHP) application. It was found that in this category of ADIGT engines, better CHP efficiency is exhibited by RC and ICR cycles than SC engine. The CHP efficiencies of RC, ICR, and SC small-scale ADIGT-CHP cycles were found to be 71%, 60%, and 56% respectively. Also, RC engine produces the highest heat recovery steam generator (HRSG) duty. The HRSG duties were found to be 3171.3 kW for RC, 2621.6 kW for ICR, and 3063.1 kW for SC. These outcomes would actually meet the objective of aiding informed preliminary choice of small-scale ADIGT engine cycle options for CHP application.展开更多
A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-gr...A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-groove along circumferential direction and radial micro-grooves which were processed by ploughing-extrusion (P-E) and stamping, respectively. Meanwhile, the cycle power of refrigerant was supplied by wick of sintered copper powder on internal surface of phase change heat sink. Operational characteristics were tested under different heat loads and refrigerants. The experimental results show that phase change heat sink is provided with a good heat transfer capability and the temperature of phase change heat sink reaches 86.8 ℃ under input power of 10 W LED at ambient temperature of 20 ℃.展开更多
Helium-xenon cooled microreactors are a vital technological solution for portable nuclear reactor power sources.To exam-ine the convective heat transfer behavior of helium-xenon gas mixtures in a core environment,nume...Helium-xenon cooled microreactors are a vital technological solution for portable nuclear reactor power sources.To exam-ine the convective heat transfer behavior of helium-xenon gas mixtures in a core environment,numerical simulations are conducted on a cylindrical coolant channel and its surrounding solid regions.Validated numerical methods are used to determine the effect and mechanisms of power and its distribution,inlet temperature and velocity,and outlet pressure on the distribution and change trend of the axial Nusselt number.Furthermore,a theoretical framework that can describe the effect of power variation on the evolution of the thermal boundary layer is employed to formulate an axial distribution cor-relation for the Nusselt number of the coolant channel,under the assumption of a cosine distribution for the axial power.Based on the simulation results,the correlation coefficients are determined,and a semi-empirical relationship is identified under the corresponding operating conditions.The correlation derived in this study is consistent with the simulations,with an average relative error of 5.3%under the operating conditions.Finally,to improve the accuracy of the predictions near the entrance,a segmented correlation is developed by combining the Kays correlation with the aforementioned correlation.The new correlation reduces the average relative error to 2.9%and maintains satisfactory accuracy throughout the entire axial range of the channel,thereby demonstrating its applicability to turbulent heat transfer calculations for helium-xenon gas mixtures within the core environment.These findings provide valuable insights into the convective heat transfer behavior of a helium-xenon gas mixture in a core environment.展开更多
Xanthan gum fermentation is probably the most complex fermentation process in terms ofrheological property variations and associated mixing,power consumption,mass and heat transferproblems.In order to obtain these dat...Xanthan gum fermentation is probably the most complex fermentation process in terms ofrheological property variations and associated mixing,power consumption,mass and heat transferproblems.In order to obtain these data,fermentations of Xanthomonas campestris were carried outon pilot scale bioreactor with different D/T ratios and different feeding strategies(batch andfed-batch).It was discovered that the rheology of xanthan fermentation broth is of paramountimportance to the above characteristics.The aerated power consumption and power number are both afunction of aeration rate during the initial stage of the fermentation when the viscosity is low andthe Reynolds number high.However when the becames viscous and Reynolds unmber≤10~3,thegas velocity does not show any effect on the power number.The oxygen mass transfer coefficientsand the overall heat transfer coefficients are both dependent on the impeller speed,the apparentviscosity of the broth and the D/T ratio.These data taken from practical展开更多
The nucleation can be enhanced by decreasing the superheat of molten steel, thus reducing temperature gradient on the solidification front can retard the growth of columnar crystals and enlarge the equiaxed zone in co...The nucleation can be enhanced by decreasing the superheat of molten steel, thus reducing temperature gradient on the solidification front can retard the growth of columnar crystals and enlarge the equiaxed zone in continuous casting strand. The billets with equiaxed zone more than 90% were cast with a combined mould and the heat flux was measured. The heat transfer of the combined mould and traditional mould was compared. The resuits show that under same casting conditions, the temperature gradient on the solidification front in the combined mould is smaller than that in traditional mould at a distance within 0-150 mm from the meniscus.展开更多
In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sint...In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sintering using a-Al203, Suzhou kaolin, talc, and feldspar as starting materials. The important parameter for solar thermal transfer tube such as water absorption (W), bulk density (Db), and the mechanical properties were investigated. The phase composition and microstructure of the composite ceramics were analyzed by XRD and SEM. The experimental results show that the B3 sintered at 1 300 ℃ and holding for 3 h has an optimum thermal shock resistance. The bending strength loss rate of B3 is only 2% at 1 100℃ by air quenching-strength test and the sample can endure 30 times thermal shock cycling, and the water absorption, the bulk density and the bending strength are 0.32%, 2.58 g·cm-3, and 125.59 MPa respectively. The XRD analysis indicated that the phase compositions of the sample were mullite, cordierite, corundum, and spinel. The SEM images illustrate that the cordierite is prismatic grain and the mullite is nano rod, showing a good thermal shock resistance for composite ceramics as potential solar thermal power material.展开更多
To study the heat and mass transfer characteristics of alkali metals in a combined porous wick in high-temperature heat pipes,a three-dimensional(3-D)numerical model is constructed by using the finite volume method,Da...To study the heat and mass transfer characteristics of alkali metals in a combined porous wick in high-temperature heat pipes,a three-dimensional(3-D)numerical model is constructed by using the finite volume method,Darcy’s theory,and the theory of local thermal equilibrium.The research finds that the pressure drop of fluids flowing through a combined porous wick exhibits an increasing trend with increasing flow velocity at the inlet and with decreasing permeability of the porous media;a combined porous wick of lower porosity and permeability and larger fluid velocity at the inlet is found to have a less uniformly distributed fluid velocity;the different temperatures of the fluid at the inlet mainly influence the inlet section of the computational model,while having negligible effect thereon in the axial direction(this embodies the thermal homogeneity of such heat pipes).The result reveals that the temperature change in fluids at the inlet does not significantly affect the overall temperature distribution in a combined wick.展开更多
In this study,we have examined the effects of exposure to high temperature, carbon inonoxideor a combination of both conditions in a model system,the rat and in industrial workers.In the rat liver, HSP70 mRNA and HSP7...In this study,we have examined the effects of exposure to high temperature, carbon inonoxideor a combination of both conditions in a model system,the rat and in industrial workers.In the rat liver, HSP70 mRNA and HSP70 synthesis were measured by dot hybridization and western blot. The results showed that after a heat stress HSP70 mRNA and its product, HSP70 increased significantly and there was a synergism in the combined effects of high temperature and carbon monoxide exposure on the induction of HSP70 mRNA and HSP70 synthesis. Heat played a major role in this induction. The presence of antibodies to human HSP27, HSP60, HSP70,HSC73, HSP89 αand β in workers exposed to heat, carbon monoxide was also measured by western blot using purified HSPs as antigens. Plasma free amino acids were measured in the saine group of workers. The incidence of antibodies to HSP27 and HSP70 Was significantly higher in the workers working in an environment with extreme heat, and high carbon monoxide ernission than in a control group. The carbon monoxide exposed group showed the highest incidence of antibodies to HSPs. Although our previous results indicated that workers had an insufficient protein intake,plasma free amino acids tended to increase, especially in methionine and tryptophan two kinds of amino acids which are absent from the main stress protein, HSP70.These results suggest that the major problems that these workers may face are how to facilitate the use of plasma free amino acids and reduce the inhibition of synthesis of normal proteins when they are exposed to occupational harmful factors.These resultsalso add new information on the measurement of HSPs as a potential biomonitor to assess whether organisms are experiencing metabolic stress within their environment.展开更多
文摘In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.
基金Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization(South China University of Technology)(2013A061401005)Research Fund(JMSWFW-2110-044)from Zhongshan Jiaming Electric Power Co.,Ltd.
文摘The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(No.2018YFE0309103)National Natural Science Foundation of China(Nos.12305243 and 51821005)。
文摘On J-TEXT,the temporal evolution of heat flux distribution on the high-field side(HFS)divertor plate has been measured by an infrared(IR)camera during the plasma operation with an island divertor configuration.In experiments,the island divertor configuration is an edge magnetic island chain structure surrounded by stochastic layers,which can be induced by resonant magnetic perturbations(RMPs).The experimental results show that the heat flux distribution on the HFS target plate depends significantly on the edge magnetic topology.Furthermore,the impact of hydrogen fueling using supersonic molecular beam injection(SMBI)on the divertor heat flux distributions is studied on J-TEXT with an island divertor configuration.It has been observed that power detachment can be achieved when the radiation front approaches the last closed flux surface(LCFS)after each SMBI pulse.This result may provide a method of access for divertor detachment on a fusion device with a three-dimensional(3D)boundary magnetic structure.
基金a phased achievement of Gansu Province’s Major Science and Technology Project(19ZD2GA003)“Key Technologies and Demonstrative Applications of Market Consumption and Dispatching Control of Photothermal-Photovoltaic-Wind PowerNew Energy Base(Multi Energy System Optimization)”.
文摘Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed.Firstly,the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output,obtains the optimal output value under the economic conditions of each new energy station,and then obtains the maximum consumption space of the new energy station.Secondly,based on the optimization results of the first stage,the second stage dispatching model uses the dispatching method of fuzzy comprehensive ranking priority to prioritize the new energy stations,and then makes a fair allocation to the dispatching of the wind and solar stations.Finally,the analysis of a specific example shows that themodel can take into account the fairness of active power distribution of new energy stations on the basis of ensuring the economy of system operation,make full use of the consumption space,and realize the medium and long-term fairness distribution of dispatching plan.
基金Special Fund for IndustryUniversity and Research Cooperation(No.2011DFR61130)
文摘To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state. In the system,R245 fa was selected as the working fluid. A scroll expander was modeled with empirical isentropic expansion efficiency.Plate heat exchangers were selected as the evaporator and the condenser, and detailed heat transfer models were programmed for both one-phase and two-phase regions. Simulations were carried out at seven different heat source temperatures( 80,90, 100, 110, 120, 130, 140 ℃) in combination with eight different heat sink temperatures( 20, 25, 30, 35, 40, 45, 50,55 ℃). Results showthat in the ORC without an internal heat exchanger( IHE), the optimum cycle efficiencies are in the range of 7. 0% to 7. 3% when the temperature differences between the heat source and heat sink are in the range of 70 to90 ℃. Simulations on CHP reveal that domestic hot water can be produced when the heat sink inlet temperature is higher than40 ℃, and the corresponding exergy efficiency and overall thermal efficiency are 29% to 56% and 87% to 90% higher than those in the non-CHP ORC, respectively. It is found that the IHE has little effect on the improvement of work output and efficiencies for the CHP ORC.
文摘Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits such as lower electricity generation price. In Iran among all type of DGs, because of wide natural gas network infrastructure and several incentives that government legislated to support combined cooling, heat and power (CCHP) investors, this type of technology is more prevalent in comparison with other technologies. Between existing CCHP technologies, certain economic choices are to be taken into account. For different buildings with different load curves, suitable size and operation of CCHP should be calculated to make the project more feasible. If CCHP does not well suited for a position, then the whole energy efficiency would be plunged significantly. In this paper, a model to find the optimal size and operation of CCHP and auxiliary boiler for any users is proposed by considering an integrated view of electricity and natural gas network using GAMS software. Then this method is applying for a hospital in Tehran as a real case study. Finally, by applying COMFAR III software, useful financial parameters and sensitivity analysis are calculated.
文摘This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided.
基金financial support provided by the National Key Research and Development Program of China(No.2018YFB1501805)China Geological Survey Project(Grant No.DD2019135,and No.DD20211336)。
文摘As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon neutralization. The main challenge for EGSs is to reduce the investment cost. In the present study, thermo-economic investigations of EGS projects are conducted. The effects of geofluid mass flow rate, wellhead temperature and loss rate on the thermo-economic performance of the EGS organic Rankine cycle(ORC) are studied. A performance comparison between EGS-ORC and the EGS combined heating and power system(CHP) is presented. Considering the CO_(2)emission reduction benefits, the influence of carbon emission trading price on the levelized cost of energy(LCOE) is also presented. It is indicated that the geofluid mass flow rate is a critical parameter in dictating the success of a project. Under the assumed typical working conditions, the LCOE of EGS-ORC and EGS-CHP systems are 24.72 and 16.1 cents/k Wh, respectively. Compared with the EGS-ORC system, the LCOE of the EGS-CHP system is reduced by 35%. EGS-CHP systems have the potential to be economically viable in the future. With carbon emission trading prices of 12.76 USD/ton, the LCOE can be reduced by approximately 8.5%.
基金supported by Major International(Regional)Joint Research Project of the National Natural Science Foundation of China(61320106011)National High Technology Research and Development Program of China(863 Program)(2014AA052802)National Natural Science Foundation of China(61573224)
基金This work was partially supported by the Brook Byers Institute for Sustainable Systems, the Hightower Chair, Georgia Research Alliance, and grants (083604, 1441208) from the US National Science Foundation Program for Emerging Frontiers in Research and Innovation (EFRI).
文摘The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.
文摘Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the steam cycle which in turn generates electricity from the generator connected to the steam turbine. In addition, heat from the process is supplied to a district heating system. The heat can be extracted from the system in a number of ways, by using a back-pressure steam turbine, an extraction steam turbine or by extracting heat directly from the boiler. The objective of the paper is the design, modeling and simulation of such CHP plant. The plant should be sized for providing electric-ity and heat for the Anticosti Island community in Quebec.
文摘This research proposes a synergistic meta-heuristic algorithm for solving the extreme operational complications of combined heat and power economic dispatch problem towards the advantageous economic outcomes on the cost of generation. The combined heat and power (CHP) is a system that provides electricity and thermal energy concurrently. For its extraordinary efficiency and significant emission reduction, it is considered a promising energy prospect. The broad application of combined heat and power units requires the joint dispatch of power and heating systems, in which the modelling of combined heat and power units plays a vital role. The present research employs the genetic optimization algorithm to evaluate the cost function, heat and power dispatch values encountered in a system with simple cycle cogeneration unit and quadratic cost function. The system was first modeled to determine the various parameters of combined heat and power units towards solving its economic dispatch problem directly. In order for modelling to be done, a general structure of combined heat and power must be defined. The test system considered consists of four units: two conventional power units, one combined heat and power unit and one heat-only unit. The algorithm was applied to test system while taking into account the power and heat units, bounds of the units and feasible operation region of cogeneration unit. Output decision variables of 4-unit test systems plus cost function from Genetic Algorithm (GA), was determined using appropriate codes. The proposed algorithm produced a well spread and diverse optimal solution and also converged reasonably to the actual optimal solution in 51 iterations. The result obtained compared favourably with that obtained with the direct solution algorithm discussed in a previous paper. We conclude that the genetic algorithm is quite efficient in dealing with non-convex and constrained combined heat and power economic dispatch problem.
文摘This paper considers comparative assessment of combined-heat-and-power (CHP) performance of three small-scale aero-derivative industrial gas turbine cycles in the petrochemical industry. The bulk of supposedly waste exhaust heat associated with gas turbine operation has necessitated the need for CHP application for greater fuel efficiency. This would render gas turbine cycles environ-mentally-friendly, and more economical. However, choosing a particular engine cycle option for small-scale CHP requires information about performances of CHP engine cycle options. The investigation encompasses comparative assessment of simple cycle (SC), recuperated (RC), and intercooled-recuperated (ICR) small-scale aero-derivative industrial gas turbines combined-heat-and-power (SS-ADIGT-CHP). Small-scale ADIGT engines of 1.567 MW derived from helicopter gas turbines are herein analysed in combined-heat-and-power (CHP) application. It was found that in this category of ADIGT engines, better CHP efficiency is exhibited by RC and ICR cycles than SC engine. The CHP efficiencies of RC, ICR, and SC small-scale ADIGT-CHP cycles were found to be 71%, 60%, and 56% respectively. Also, RC engine produces the highest heat recovery steam generator (HRSG) duty. The HRSG duties were found to be 3171.3 kW for RC, 2621.6 kW for ICR, and 3063.1 kW for SC. These outcomes would actually meet the objective of aiding informed preliminary choice of small-scale ADIGT engine cycle options for CHP application.
基金Projects(50436010,50930005)supported by the National Natural Science Foundation of ChinaProject(U0834002)supported by the Joint Fund of NSFC-Guangdong of China
文摘A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-groove along circumferential direction and radial micro-grooves which were processed by ploughing-extrusion (P-E) and stamping, respectively. Meanwhile, the cycle power of refrigerant was supplied by wick of sintered copper powder on internal surface of phase change heat sink. Operational characteristics were tested under different heat loads and refrigerants. The experimental results show that phase change heat sink is provided with a good heat transfer capability and the temperature of phase change heat sink reaches 86.8 ℃ under input power of 10 W LED at ambient temperature of 20 ℃.
基金The work was supported by the National Key R&D Program of China(No.2020YFB1901900)the National Natural Science Foundation of China(No.12275175)+2 种基金the Special Fund for Strengthening Industry of Shanghai(No.GYQJ-2018-2-02)the Shanghai Rising Star Program(No.21QA1404200)the Ling Chuang Research Project of the China National Nuclear Corporation.
文摘Helium-xenon cooled microreactors are a vital technological solution for portable nuclear reactor power sources.To exam-ine the convective heat transfer behavior of helium-xenon gas mixtures in a core environment,numerical simulations are conducted on a cylindrical coolant channel and its surrounding solid regions.Validated numerical methods are used to determine the effect and mechanisms of power and its distribution,inlet temperature and velocity,and outlet pressure on the distribution and change trend of the axial Nusselt number.Furthermore,a theoretical framework that can describe the effect of power variation on the evolution of the thermal boundary layer is employed to formulate an axial distribution cor-relation for the Nusselt number of the coolant channel,under the assumption of a cosine distribution for the axial power.Based on the simulation results,the correlation coefficients are determined,and a semi-empirical relationship is identified under the corresponding operating conditions.The correlation derived in this study is consistent with the simulations,with an average relative error of 5.3%under the operating conditions.Finally,to improve the accuracy of the predictions near the entrance,a segmented correlation is developed by combining the Kays correlation with the aforementioned correlation.The new correlation reduces the average relative error to 2.9%and maintains satisfactory accuracy throughout the entire axial range of the channel,thereby demonstrating its applicability to turbulent heat transfer calculations for helium-xenon gas mixtures within the core environment.These findings provide valuable insights into the convective heat transfer behavior of a helium-xenon gas mixture in a core environment.
文摘Xanthan gum fermentation is probably the most complex fermentation process in terms ofrheological property variations and associated mixing,power consumption,mass and heat transferproblems.In order to obtain these data,fermentations of Xanthomonas campestris were carried outon pilot scale bioreactor with different D/T ratios and different feeding strategies(batch andfed-batch).It was discovered that the rheology of xanthan fermentation broth is of paramountimportance to the above characteristics.The aerated power consumption and power number are both afunction of aeration rate during the initial stage of the fermentation when the viscosity is low andthe Reynolds number high.However when the becames viscous and Reynolds unmber≤10~3,thegas velocity does not show any effect on the power number.The oxygen mass transfer coefficientsand the overall heat transfer coefficients are both dependent on the impeller speed,the apparentviscosity of the broth and the D/T ratio.These data taken from practical
文摘The nucleation can be enhanced by decreasing the superheat of molten steel, thus reducing temperature gradient on the solidification front can retard the growth of columnar crystals and enlarge the equiaxed zone in continuous casting strand. The billets with equiaxed zone more than 90% were cast with a combined mould and the heat flux was measured. The heat transfer of the combined mould and traditional mould was compared. The resuits show that under same casting conditions, the temperature gradient on the solidification front in the combined mould is smaller than that in traditional mould at a distance within 0-150 mm from the meniscus.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2010CB227105)
文摘In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sintering using a-Al203, Suzhou kaolin, talc, and feldspar as starting materials. The important parameter for solar thermal transfer tube such as water absorption (W), bulk density (Db), and the mechanical properties were investigated. The phase composition and microstructure of the composite ceramics were analyzed by XRD and SEM. The experimental results show that the B3 sintered at 1 300 ℃ and holding for 3 h has an optimum thermal shock resistance. The bending strength loss rate of B3 is only 2% at 1 100℃ by air quenching-strength test and the sample can endure 30 times thermal shock cycling, and the water absorption, the bulk density and the bending strength are 0.32%, 2.58 g·cm-3, and 125.59 MPa respectively. The XRD analysis indicated that the phase compositions of the sample were mullite, cordierite, corundum, and spinel. The SEM images illustrate that the cordierite is prismatic grain and the mullite is nano rod, showing a good thermal shock resistance for composite ceramics as potential solar thermal power material.
基金supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20180177)the Science and Technology Foundation of Xuzhou,China(Grant No.KH17007)the Natural Science Foundation for Colleges and Universities of Jiangsu Province,China(Grant No.17KJB460015,No.18KJB460028).
文摘To study the heat and mass transfer characteristics of alkali metals in a combined porous wick in high-temperature heat pipes,a three-dimensional(3-D)numerical model is constructed by using the finite volume method,Darcy’s theory,and the theory of local thermal equilibrium.The research finds that the pressure drop of fluids flowing through a combined porous wick exhibits an increasing trend with increasing flow velocity at the inlet and with decreasing permeability of the porous media;a combined porous wick of lower porosity and permeability and larger fluid velocity at the inlet is found to have a less uniformly distributed fluid velocity;the different temperatures of the fluid at the inlet mainly influence the inlet section of the computational model,while having negligible effect thereon in the axial direction(this embodies the thermal homogeneity of such heat pipes).The result reveals that the temperature change in fluids at the inlet does not significantly affect the overall temperature distribution in a combined wick.
文摘In this study,we have examined the effects of exposure to high temperature, carbon inonoxideor a combination of both conditions in a model system,the rat and in industrial workers.In the rat liver, HSP70 mRNA and HSP70 synthesis were measured by dot hybridization and western blot. The results showed that after a heat stress HSP70 mRNA and its product, HSP70 increased significantly and there was a synergism in the combined effects of high temperature and carbon monoxide exposure on the induction of HSP70 mRNA and HSP70 synthesis. Heat played a major role in this induction. The presence of antibodies to human HSP27, HSP60, HSP70,HSC73, HSP89 αand β in workers exposed to heat, carbon monoxide was also measured by western blot using purified HSPs as antigens. Plasma free amino acids were measured in the saine group of workers. The incidence of antibodies to HSP27 and HSP70 Was significantly higher in the workers working in an environment with extreme heat, and high carbon monoxide ernission than in a control group. The carbon monoxide exposed group showed the highest incidence of antibodies to HSPs. Although our previous results indicated that workers had an insufficient protein intake,plasma free amino acids tended to increase, especially in methionine and tryptophan two kinds of amino acids which are absent from the main stress protein, HSP70.These results suggest that the major problems that these workers may face are how to facilitate the use of plasma free amino acids and reduce the inhibition of synthesis of normal proteins when they are exposed to occupational harmful factors.These resultsalso add new information on the measurement of HSPs as a potential biomonitor to assess whether organisms are experiencing metabolic stress within their environment.