期刊文献+
共找到2,700篇文章
< 1 2 135 >
每页显示 20 50 100
Resting-state functional magnetic resonance imaging and support vector machines for the diagnosis of major depressive disorder in adolescents
1
作者 Zhi-Hui Yu Ren-Qiang Yu +6 位作者 Xing-Yu Wang Wen-Yu Ren Xiao-Qin Zhang Wei Wu Xiao Li Lin-Qi Dai Ya-Lan Lv 《World Journal of Psychiatry》 SCIE 2024年第11期1696-1707,共12页
BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers base... BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls. 展开更多
关键词 Major depressive disorder ADOLESCENT support vector machine machine learning Resting-state functional magnetic resonance imaging NEUROIMAGING BIOMARKER
下载PDF
POSITIVE DEFINITE KERNEL IN SUPPORT VECTOR MACHINE(SVM) 被引量:3
2
作者 谢志鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第2期114-121,共8页
The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used t... The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed. 展开更多
关键词 support vector machines(SVMs) mercer kernel reproducing kernel positive definite kernel scaling and wavelet kernel
下载PDF
Nonlinear Model Predictive Control Based on Support Vector Machine with Multi-kernel 被引量:22
3
作者 包哲静 皮道映 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期691-697,共7页
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a... Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm. 展开更多
关键词 nonlinear model predictive control support vector machine with multi-kernel nonlinear system identification kernel function
下载PDF
Fuzzy smooth support vector machine with different smooth functions 被引量:5
4
作者 Chuandong Qin Sanyang Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期460-466,共7页
Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-G... Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the Newdon-Armijio (NA) algorithm easily, however the accuracy of sigmoid function is not as good as that of polyno- mial smooth function. Furthermore, the method cannot reduce the influence of outliers or noise in dataset. A fuzzy smooth support vector machine (FSSVM) with fuzzy membership and polynomial smooth functions is introduced into the SVM. The fuzzy member- ship considers the contribution rate of each sample to the optimal separating hyperplane and makes the optimization problem more accurate at the inflection point. Those changes play a positive role on trials. The results of the experiments show that those FSSVMs can obtain a better accuracy and consume the shorter time than SSVM and lagrange support vector machine (LSVM). 展开更多
关键词 smooth support vector machine (SSVM) fuzzy sig- moid function polynomial smooth function fuzzy membership Broyden-Fletcher-Gddfarb-Shanno (BFGS).
下载PDF
Adjustable entropy function method for support vector machine 被引量:4
5
作者 Wu Qing Liu Sanyang Zhang Leyou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1029-1034,共6页
Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the... Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the proposed optimization problem and the Newton algorithm is used to figure out the optimal solution. The proposed method can find an optimal solution with a relatively small parameter p, which avoids the numerical overflow in the traditional entropy function methods. It is a new approach to solve support vector machine. The theoretical analysis and experimental results illustrate the feasibility and efficiency of the proposed algorithm. 展开更多
关键词 OPTIMIZATION support vector machine adjustable entropy function Newton algorithm.
下载PDF
Incremental support vector machine algorithm based on multi-kernel learning 被引量:7
6
作者 Zhiyu Li Junfeng Zhang Shousong Hu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期702-706,共5页
A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set l... A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set learning problem can be solved effectively. Furthermore, different punishments are adopted in allusion to the training subset and the acquired support vectors, which may help to improve the performance of SVM. Simulation results indicate that the proposed algorithm can not only solve the model selection problem in SVM incremental learning, but also improve the classification or prediction precision. 展开更多
关键词 support vector machine (SVM) incremental learning multiple kernel learning (MKL).
下载PDF
Classification of power quality combined disturbances based on phase space reconstruction and support vector machines 被引量:3
7
作者 Zhi-yong LI Wei-lin WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第2期173-181,共9页
Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The cl... Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term dis-turbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages. 展开更多
关键词 Power Quality (PQ) combined disturbance CLASSIFICATION Phase Space Reconstruction (PSR) support vector machines (SVMs)
下载PDF
Chaotic time series prediction using fuzzy sigmoid kernel-based support vector machines 被引量:2
8
作者 刘涵 刘丁 邓凌峰 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第6期1196-1200,共5页
Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel i... Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel in SVM is drawn in a more natural way by using the fuzzy logic method proposed in this paper. This method provides easy hardware implementation and straightforward interpretability. Experiments on two typical chaotic time series predictions have been carried out and the obtained results show that the average CPU time can be reduced significantly at the cost of a small decrease in prediction accuracy, which is favourable for the hardware implementation for chaotic time series prediction. 展开更多
关键词 support vector machines chaotic time series prediction fuzzy sigmoid kernel
下载PDF
Forecast Urban Air Pollution in Mexico City by Using Support Vector Machines: A Kernel Performance Approach 被引量:1
9
作者 Artemio Sotomayor-Olmedo Marco A. Aceves-Fernández +3 位作者 Efrén Gorrostieta-Hurtado Carlos Pedraza-Ortega Juan M. Ramos-Arreguín J. Emilio Vargas-Soto 《International Journal of Intelligence Science》 2013年第3期126-135,共10页
The development of forecasting models for pollution particles shows a nonlinear dynamic behavior;hence, implementation is a non-trivial process. In the literature, there have been multiple models of particulate pollut... The development of forecasting models for pollution particles shows a nonlinear dynamic behavior;hence, implementation is a non-trivial process. In the literature, there have been multiple models of particulate pollutants, which use softcomputing techniques and machine learning such as: multilayer perceptrons, neural networks, support vector machines, kernel algorithms, and so on. This paper presents a prediction pollution model using support vector machines and kernel functions, which are: Gaussian, Polynomial and Spline. Finally, the prediction results of ozone (O3), particulate matter (PM10) and nitrogen dioxide (NO2) at Mexico City are presented as a case study using these techniques. 展开更多
关键词 PREDICTIVE Models AIRBORNE POLLUTION support vector machines kernel functions
下载PDF
WAVELET KERNEL SUPPORT VECTOR MACHINES FOR SPARSE APPROXIMATION 被引量:1
10
作者 Tong Yubing Yang Dongkai Zhang Qishan 《Journal of Electronics(China)》 2006年第4期539-542,共4页
Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support... Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with bet-ter sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM according to Mercy theory; then new SVM with this kernel can be used to approximate the target fun-citon with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation ex-periment show the feasibility and validity of wavelet kernel support vector machines. 展开更多
关键词 Wavelet kernel function support vector machines (SVM) Sparse approximation Quadratic Programming (QP)
下载PDF
Path Loss Modeling: A Machine Learning Based Approach Using Support Vector Regression and Radial Basis Function Models 被引量:3
11
作者 Stephen Ojo Arif Sari Taiwo P. Ojo 《Open Journal of Applied Sciences》 2022年第6期990-1010,共21页
Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introdu... Path loss prediction models are vital for accurate signal propagation in wireless channels. Empirical and deterministic models used in path loss predictions have not produced optimal results. In this paper, we introduced machine learning algorithms to path loss predictions because it offers a flexible network architecture and extensive data can be used. We introduced support vector regression (SVR) and radial basis function (RBF) models to path loss predictions in the investigated environments. The SVR model was able to process several input parameters without introducing complexity to the network architecture. The RBF on its part provides a good function approximation. Hyperparameter tuning of the machine learning models was carried out in order to achieve optimal results. The performances of the SVR and RBF models were compared and result validated using the root-mean squared error (RMSE). The two machine learning algorithms were also compared with the Cost-231, SUI, Egli, Freespace, Cost-231 W-I models. The analytical models overpredicted path loss. Overall, the machine learning models predicted path loss with greater accuracy than the empirical models. The SVR model performed best across all the indices with RMSE values of 1.378 dB, 1.4523 dB, 2.1568 dB in rural, suburban and urban settings respectively and should therefore be adopted for signal propagation in the investigated environments and beyond. 展开更多
关键词 support vector Regression Radial Basis function machine Learning Path Loss Empirical DETERMINISTIC
下载PDF
A Kernel Clustering Algorithm for Fast Training of Support Vector Machines
12
作者 刘笑嶂 冯国灿 《Journal of Donghua University(English Edition)》 EI CAS 2011年第1期53-56,共4页
A new algorithm named kernel bisecting k-means and sample removal(KBK-SR) is proposed as sampling preprocessing for support vector machine(SVM) training to improve the efficiency.The proposed algorithm tends to quickl... A new algorithm named kernel bisecting k-means and sample removal(KBK-SR) is proposed as sampling preprocessing for support vector machine(SVM) training to improve the efficiency.The proposed algorithm tends to quickly produce balanced clusters of similar sizes in the kernel feature space,which makes it efficient and effective for reducing training samples.Theoretical analysis and experimental results on three UCI real data benchmarks both show that,with very short sampling time,the proposed algorithm dramatically accelerates SVM sampling and training while maintaining high test accuracy. 展开更多
关键词 support vector machines(SVMs) sample reduction topdown hierarchical clustering kernel bisecting k-means
下载PDF
Support vector machine with mixture of kernels for automatic image annotation
13
作者 田东平 Zhao Xiaofei Shi Zhongzhi 《High Technology Letters》 EI CAS 2013年第3期295-300,共6页
Automatic image annotation(AIA)has become an important and challenging problem in computer vision due to the existence of semantic gap.In this paper,a novel support vector machine with mixture of kernels(SVM-MK)for au... Automatic image annotation(AIA)has become an important and challenging problem in computer vision due to the existence of semantic gap.In this paper,a novel support vector machine with mixture of kernels(SVM-MK)for automatic image annotation is proposed.On one hand,the combined global and local block-based image features are extracted in order to reflect the intrinsic content of images as complete as possible.On the other hand,SVM-MK is constructed to shoot for better annotating performance.Experimental results on Corel dataset show that the proposed image feature representation method as well as automatic image annotation classifier,SVM-MK,can achieve higher annotating accuracy than SVM with any single kernel and mi-SVM for semantic image annotation. 展开更多
关键词 automatic image annotation AIA) support vector machine SVM) kernel func-tion principal component analysis (PCA)
下载PDF
A Novel Kernel for Least Squares Support Vector Machine
14
作者 冯伟 赵永平 +2 位作者 杜忠华 李德才 王立峰 《Defence Technology(防务技术)》 SCIE EI CAS 2012年第4期240-247,共8页
Extreme learning machine(ELM) has attracted much attention in recent years due to its fast convergence and good performance.Merging both ELM and support vector machine is an important trend,thus yielding an ELM kernel... Extreme learning machine(ELM) has attracted much attention in recent years due to its fast convergence and good performance.Merging both ELM and support vector machine is an important trend,thus yielding an ELM kernel.ELM kernel based methods are able to solve the nonlinear problems by inducing an explicit mapping compared with the commonly-used kernels such as Gaussian kernel.In this paper,the ELM kernel is extended to the least squares support vector regression(LSSVR),so ELM-LSSVR was proposed.ELM-LSSVR can be used to reduce the training and test time simultaneously without extra techniques such as sequential minimal optimization and pruning mechanism.Moreover,the memory space for the training and test was relieved.To confirm the efficacy and feasibility of the proposed ELM-LSSVR,the experiments are reported to demonstrate that ELM-LSSVR takes the advantage of training and test time with comparable accuracy to other algorithms. 展开更多
关键词 计算技术 理论 方法 自动机理论
下载PDF
Support vector machine based nonlinear model multi-step-ahead optimizing predictive control 被引量:9
15
作者 钟伟民 皮道映 孙优贤 《Journal of Central South University of Technology》 EI 2005年第5期591-595,共5页
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established... A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection. 展开更多
关键词 nonlinear model predictive control support vector machine nonlinear system identification kernel function nonlinear optimization
下载PDF
Temperature prediction control based on least squares support vector machines 被引量:5
16
作者 BinLIU HongyeSU +1 位作者 WeihuaHUANG JianCHU 《控制理论与应用(英文版)》 EI 2004年第4期365-370,共6页
A prediction control algorithm is presented based on least squares support vector machines (LS-SVM) model for a class of complex systems with strong nonlinearity. The nonlinear off-line model of the controlled plant i... A prediction control algorithm is presented based on least squares support vector machines (LS-SVM) model for a class of complex systems with strong nonlinearity. The nonlinear off-line model of the controlled plant is built by LS-SVM with radial basis function (RBF) kernel. In the process of system running, the off-line model is linearized at each sampling instant, and the generalized prediction control (GPC) algorithm is employed to implement the prediction control for the controlled plant. The obtained algorithm is applied to a boiler temperature control system with complicated nonlinearity and large time delay. The results of the experiment verify the effectiveness and merit of the algorithm. 展开更多
关键词 Predictive control Least squares support vector machines RBF kernel function Generalized prediction control
下载PDF
New predictive control algorithms based on Least Squares Support Vector Machines 被引量:3
17
作者 刘斌 苏宏业 褚健 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第5期440-446,共7页
Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlin... Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms. 展开更多
关键词 Least Squares support vector machines Linear kernel function RBF kernel function Generalized predictive control
下载PDF
New family of piecewise smooth support vector machine 被引量:3
18
作者 Qing Wu Leyou Zhang Wan Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期618-625,共8页
Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth th... Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth the objective function of uncon- strained SVMs. The three-order piecewise smooth support vector machine (TPWSSVMd) is proposed. The piecewise functions can get higher and higher approximation accuracy as required with the increase of parameter d. The global convergence proof of TPWSSVMd is given with the rough set theory. TPWSSVMd can efficiently handle large scale and high dimensional problems. Nu- merical results demonstrate TPWSSVMa has better classification performance and learning efficiency than other competitive base- lines. 展开更多
关键词 support vector machine (SVM) piecewise smooth function smooth technique bound of convergence.
下载PDF
Mandarin Digits Speech Recognition Using Support Vector Machines 被引量:2
19
作者 谢湘 匡镜明 《Journal of Beijing Institute of Technology》 EI CAS 2005年第1期9-12,共4页
A method of applying support vector machine (SVM) in speech recognition was proposed, and a speech recognition system for mandarin digits was built up by SVMs. In the system, vectors were linearly extracted from speec... A method of applying support vector machine (SVM) in speech recognition was proposed, and a speech recognition system for mandarin digits was built up by SVMs. In the system, vectors were linearly extracted from speech feature sequence to make up time-aligned input patterns for SVM, and the decisions of several 2-class SVM classifiers were employed for constructing an N-class classifier. Four kinds of SVM kernel functions were compared in the experiments of speaker-independent speech recognition of mandarin digits. And the kernel of radial basis function has the highest accurate rate of 99.33%, which is better than that of the baseline system based on hidden Markov models (HMM) (97.08%). And the experiments also show that SVM can outperform HMM especially when the samples for learning were very limited. 展开更多
关键词 speech recognition support vector machine (SVM) kernel function
下载PDF
Support Vector Machine:A Novel Tool for Mineral Prospectivity Mapping 被引量:1
20
作者 Renguang Zuo~1,Gang Chen~2 1.State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China. 2.Faculty of Information Engineering,China University of Geosciences(Wuhan),Wuhan 430074,China 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期289-289,共1页
Support Vector Machine(SVM) was demonstrated as a potentially useful tool to integrate multi-variables and to produce a predictive map for mineral deposits. The e 1071,a free R package,was used to construct a SVM with... Support Vector Machine(SVM) was demonstrated as a potentially useful tool to integrate multi-variables and to produce a predictive map for mineral deposits. The e 1071,a free R package,was used to construct a SVM with radial kernel function to integrate four evidence layers and to map prospectivity for Gangdese porphyry copper deposits.The results demonstrate that the predicted prospective target area for Cu occupies 20.5%of the total study area and contains 52.4%of the total number of known porphyry copper deposits.The results obtained 展开更多
关键词 support vector machine kernel function prospectivity NEURAL Network TIBET
下载PDF
上一页 1 2 135 下一页 到第
使用帮助 返回顶部