期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Reliability analysis of marine risers with narrow and long corrosion defects under combined loads 被引量:11
1
作者 Hu Xianwei Zhou Canfeng +1 位作者 Duan Menglan An Chen 《Petroleum Science》 SCIE CAS CSCD 2014年第1期139-146,共8页
A marine riser,one of the most important components of offshore oil/gas transportation,needs to be designed to eliminate the risks caused by complex ocean environments,platform displacement and internal corrosion,etc.... A marine riser,one of the most important components of offshore oil/gas transportation,needs to be designed to eliminate the risks caused by complex ocean environments,platform displacement and internal corrosion,etc.In this study,a new analytical-numerical assessment approach is proposed in order to quantitatively investigate the reliability of internally corroded risers under combined loads including axial tension and internal pressure.First,an analytical solution of the limit state function of intact risers under combined loads is obtained,which is further modified by the non-dimensional corrosion depth (d/ t) for the risers with a narrow and long corrosion defect.The relationship between d/t and limited internal pressure is obtained by finite element analysis and nonlinear regression.Through an advanced first-order reliability method (HL-RF) algorithm,reliability analysis is performed to obtain the failure probability,the reliability index and the sensitivity.These results are further verified by Monte-Carlo importance sampling.The proposed approach of reliability analysis provides an accurate and effective way to estimate the reliability of marine risers with narrow and long corrosion defects under combined loads. 展开更多
关键词 Marine riser corrosion defect combined loads reliability calculation reliability verification
下载PDF
Study on Failure Mechanism and Bearing Capacity of Three-Dimensional Rectangular Footing Subjected to Combined Loading 被引量:8
2
作者 张其一 栾茂田 王忠涛 《China Ocean Engineering》 SCIE EI 2008年第2期313-330,共18页
This paper presents two kinematic failure mechanisms of threc-dimensional rectangular footing resting on homogeneous undrained clay foundation under uniaxial vertical loading and uniaxial moment loading. The failure m... This paper presents two kinematic failure mechanisms of threc-dimensional rectangular footing resting on homogeneous undrained clay foundation under uniaxial vertical loading and uniaxial moment loading. The failure mechanism under vertical loading comprises a plane strain Prandti-type mechanism over the central part of the longer side, and the size of the mechanism gradually reduces at the ends of the longer side and over the shorter side as the corner of rectangular footing is being approached where the direction of soil motion remains normal to each corresponding side respectively. The failure mechanism under moment loading comprises a plane strain scoop sliding mechanism over the central part of the longer side, and the radius of scoop sliding mechanism increases linearly at the ends of the longer side. On the basis of the kinematic failure mechanisms mentioned above, the vertical ultimate bearing capacity and the ultimate bearing capacity against moment or moment ultimate bearing capacity are obtained by use of upper bound limit analysis theory. At the same time, numerical analysis results, Skempton' s results and Salgado et al. 's results are compared with this upper bound solution. It shows that the presented failure mechanisms and plastic limit analysis predictions are validated. In order to investigate the behaviors of undrained clay foundation beneath the rectangular footing subjected to the combined loadings, numerical analysis is adopted by virtue of the general-purpose FEM software ABAQUS, where the clay is assumed to obey the Mohr-Coulomb yielding criterion. The failure envelope and the ultimate bearing capacity are achieved by the numerical analysis results with the varying aspect ratios from length L to breadth B of the rectangular footing. The failure mechanisms of rectangular footing which are subjected to the combined vertical loading V and horizontal loading H (Vertical loading V and moment loading M, and horizontal loading H and moment loading M respectively are observed in the finite element analysis. ) is explained by use of the upper bound plasticity limit analysis theory. Finally, the reason of eccentricity of failure envelope in H-M loading space is given in this study, which can not be explained by use of the traditional ' swipe test'. 展开更多
关键词 rectangular footing upper bound limit analysis failure mechardsm failure envelope combined loading
下载PDF
Elastoplastic solutions for single piles under combined vertical and lateral loads 被引量:16
3
作者 ZHANG Lei GONG Xiao-nan +1 位作者 YANG Zhong-xuan YU Jian-lin 《Journal of Central South University》 SCIE EI CAS 2011年第1期216-222,共7页
In order to improve the reliability of the design and calculation of single piles under the combined vertical and lateral loads, the solutions were presented based on the subgrade reaction method, in which the ultimat... In order to improve the reliability of the design and calculation of single piles under the combined vertical and lateral loads, the solutions were presented based on the subgrade reaction method, in which the ultimate soil resistance was considered and the coefficient of subgrade reaction was assumed to be a constant. The corresponding computational program was developed using FORTRAN language. A comparison between the obtained solutions and the model test results was made to show the validity of the obtained solutions. The calculation results indicate that both the maximum lateral displacement and bending moment increase with the increase of the vertical and lateral loads and the pile length above ground, while decrease as the pile stiffness, the coefficient of subgrade reaction and the yielding displacement of soil increase. It is also shown that the pile head condition controls the pile responses and the vertical load may cause the instability problem to the pile. In general, the proposed method can be employed to calculate the pile responses independent of the magnitude of the pile deflection. 展开更多
关键词 pile-soil interaction combined vertical and lateral loads ultimate resistance subgrade reaction method bendingmoment
下载PDF
Buckling analysis of shear deformable composite conical shells reinforced by CNTs subjected to combined loading on the two-parameter elastic foundation 被引量:3
4
作者 A.H.Sofiyev N.Kuruoglu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第2期205-218,共14页
The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic found... The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs. 展开更多
关键词 NANOCOMPOSITES CNTS Composite conical shells Two-parameter elastic foundations combined buckling loads Shear deformation shell theories
下载PDF
Failure Loci of Suction Caisson Foundations Under CombinedLoading Conditions 被引量:2
5
作者 王栋 金霞 《China Ocean Engineering》 SCIE EI 2008年第3期455-464,共10页
Suction caissons are widely used to support offshore fixed platforms in coastal areas. The loadings transferred to suction caissons include the eccentric lateral force induced by waves and self weight of the platform ... Suction caissons are widely used to support offshore fixed platforms in coastal areas. The loadings transferred to suction caissons include the eccentric lateral force induced by waves and self weight of the platform structure. However, under this kind of combined loading conditions, the failure mechanism of caissons with shallow embedment depths is quite different from conventional deep foundations or onshore shallow footings. The behaviour of caissons subjected to combined loadings may be described with the "failure locus" in force resultant spaces. Here the failure loci of smooth caissons are studied by use of finite dement approach, with the embedment ratio of caissons varying in the range of 0.25 - 1.0 and eccentricity ratio of horizontal loadiugs in 0 - 10. The platform settlement and tilt limits are involved into determination of failure loci, thus the platforms can avoid significant displacements for the combined loadings located inside the failure locus. Three families of loading paths are used to map out the locus. It is found that the shape of failure loci depends on 3 non-dimensional parameters, and the failure locus of a given caisson changes gradually from the elliptical curve to hooked curve with increasing shear strength of soil. The lateral capacity of short caissons may be enhanced by vertical forces, compared with the maximum lateral capacity of long caissons occurring at the vertical force being zero. The critical embedment ratios partitioning elliptical and hooked loci are proposed. 展开更多
关键词 suction caissons finite elements clays bearing capacity combined loading
下载PDF
Undrained Bearing Capacity of Spudcan Under Combined Loading 被引量:2
6
作者 王立忠 舒恒 +1 位作者 李玲玲 国振 《China Ocean Engineering》 SCIE EI 2011年第1期15-30,共16页
The bearing capacities of spudcan foundation under pure vertical (/1), horizontal (H), moment (M) loading and the combined loading are studied based on a series of three-dimensional finite element analysis. The ... The bearing capacities of spudcan foundation under pure vertical (/1), horizontal (H), moment (M) loading and the combined loading are studied based on a series of three-dimensional finite element analysis. The effects of embedment ratio and soil non-homogeneity on the bearing capacity are investigated in detail. The capacities of spudcan under different pure loading are expressed in non-dimensional bearing capacity factors, which are compared with published results. Ultimate limit states under combined loading are presented by failure envelopes, which are expressed in terms of dimensionless and normalized form in three-dimensional load space. The comparison between the presented failure envelopes and available published numerical results reveals that the size and shape of failure envelopes are dependent on the embedment ratio and the non-homogeneity of the soil. 展开更多
关键词 soft clay SPUDCAN bearing capacity combined loading finite element
下载PDF
Combined load bearing capacity of rigid piles embedded in a crossanisotropic clay deposit using 3D finite element lower bound 被引量:1
7
作者 Ardavan Izadi Reza Jamshidi Chenari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期717-737,共21页
In this study,an iterative-based three-dimensional finite element lower bound in association with the second-order cone programming method is adopted to evaluate the limit load of a single pile embedded in cross-aniso... In this study,an iterative-based three-dimensional finite element lower bound in association with the second-order cone programming method is adopted to evaluate the limit load of a single pile embedded in cross-anisotropic soils under general loading condition.The lower bound solutions of the pile embedded in an anisotropic soil deposit can be found by formulating the element equilibrium,equilibrium of shear and normal stresses along discontinuities,boundary conditions,yield function,and optimizing the objective function through the second-order cone programming method in conjunction with an iterative-based update procedure.A general loading condition is considered to profile the expansion of the safe load in the vertical-horizontal-moment(V-H-M)space.The results of this study are compared and validated against three different cases including an isotropic lateral loading,anisotropic end bearing capacity,and a pile embedded in an isotropic soil deposit under general loading condition.A parametric study is conducted to evaluate the impact of different influencing factors.It was found that the effect of anisotropy on the variation of lateral limit load of a single pile is more pronounced than the corresponding vertical and bending moment limit loads,whereas the interface properties have more significant effects on the vertical and bending moment limit loads in comparison to the lateral limit load. 展开更多
关键词 Rigid pile Cross-anisotropy CLAY combined loading Three-dimensional finite element lower BOUND
下载PDF
Postbuckling of Imperfect Stiffened Cylindrical Shells Under Combined External Liquid Pressure and Axial Compression 被引量:1
8
作者 Shen HuishenProfessor, Department of Civil Engineering. Shanghai Jiao Tong University. Shanghai 200030 《China Ocean Engineering》 SCIE EI 1996年第4期367-390,共24页
posthuckling analysis is presented for the stilTened cylindrical shell of finite length subjected to combined loading of external liquid pressure and axial compression. The formulations are based on a boundary layer t... posthuckling analysis is presented for the stilTened cylindrical shell of finite length subjected to combined loading of external liquid pressure and axial compression. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, nonlinear large deflections in the postbuckling range and initial geometrical imperfections of the shell. The 'smeared stifl'cner' approach is adopted for the stiffencrs. In the analysis a singular perturbation technique is used (o determine the interactive buckling loads and the postbuckling paths. Numerical examples cover the performance of perfect and imperfect, stringer and ring stiffened cylindrical shells. Typical results arc presented in the dimcnsionless graphical form. 展开更多
关键词 structural stability ptwtbuckling stiffened cylindrical shell combined loading boundary layer theory of shell buckling singular perturbation technique.
下载PDF
Analytic elasticity solution of bi-modulus beams under combined loads 被引量:1
9
作者 Huiling ZHAO Zhiming YE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第4期427-438,共12页
A unified stress function for bi-modulus beams is proposed based on its mechanic sense on the boundary of beams. Elasticity solutions of stress and displacement for bi-modulus beams under combined loads are derived. T... A unified stress function for bi-modulus beams is proposed based on its mechanic sense on the boundary of beams. Elasticity solutions of stress and displacement for bi-modulus beams under combined loads are derived. The example analysis shows that the maximum tensile stress using the same elastic modulus theory is underestimated if the tensile elastic modulus is larger than the compressive elastic modulus. Otherwise, the maximum compressive stress is underestimated. The maximum tensile stress using the material mechanics solution is underestimated when the tensile elastic modulus is larger than the compressive elastic modulus to a certain extent. The error of stress using the material mechanics theory decreases as the span-to-height ratio of beams increases, which is apparent when L/h ≤ 5. The error also varies with the distributed load patterns. 展开更多
关键词 bi-modulus elasticity theory analytic solution combined loads
下载PDF
Space decomposition based parallelization solutions for the combined finiteediscrete element method in 2D 被引量:4
10
作者 T.Lukas G.G.Schiava D'Albano A.Munjiza 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第6期607-615,共9页
The combined finiteediscrete element method (FDEM) belongs to a family of methods of computationalmechanics of discontinua. The method is suitable for problems of discontinua, where particles aredeformable and can f... The combined finiteediscrete element method (FDEM) belongs to a family of methods of computationalmechanics of discontinua. The method is suitable for problems of discontinua, where particles aredeformable and can fracture or fragment. The applications of FDEM have spread over a number of disciplinesincluding rock mechanics, where problems like mining, mineral processing or rock blasting canbe solved by employing FDEM. In this work, a novel approach for the parallelization of two-dimensional(2D) FDEM aiming at clusters and desktop computers is developed. Dynamic domain decompositionbased parallelization solvers covering all aspects of FDEM have been developed. These have beenimplemented into the open source Y2D software package and have been tested on a PC cluster. Theoverall performance and scalability of the parallel code have been studied using numerical examples. Theresults obtained confirm the suitability of the parallel implementation for solving large scale problems. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Parallelization Load balancing PC cluster combined finiteediscrete element method(FDEM)
下载PDF
Dynamic response of UHMWPE plates under combined shock and fragment loading 被引量:1
11
作者 Chun-Zheng Zhao Lu-Sheng Qiang +4 位作者 Rui Zhang Qian-Cheng Zhang Jun-Yang Zhong Zhen-Yu Zhao Tian Jian Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期9-23,共15页
Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subject... Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subjected to combined blast and fragment impacts.Built upon a recently developed laboratory-scale experimental technique to generate simulated combined loading through the impact of a fragment-foam composite projectile launched from a light gas gun,the dynamic responses of fullyclamped UHMWPE plates subjected to combined loading were characterized experimentally,with corresponding deformation and failure modes compared with those measured with simulated blast loading alone.Subsequently,to explore the underlying physical mechanisms,three-dimensional(3D)numerical simulations with the method of finite elements(FE)were systematically carried out.Numerical predictions compared favorably well with experimental measurements,thus validating the feasibility of the established FE model.Relative to the case of blast loading alone,combined blast and fragment loading led to larger maximum deflections of clamped UHMWPE plates.The position of the FSP in the foam sabot affected significantly the performance of a UHMWPE target,either enhancing or decreasing its ballistic resistance.When the blast loading and fragment impact arrived simultaneously at the target,its ballistic resistance was superior to that achieved when subjected to fragment impact alone,and benefited from the accelerated movement of the target due to simultaneous blast loading. 展开更多
关键词 UHMWPE composite Ballistic performance combined blast and fragment loading Impact test Finite element simulation
下载PDF
Behavior of Reinforced Concrete Columns under Combined Axial Load and Bending in Accordance with a Nonlinear Numerical Model 被引量:1
12
作者 Carlos Eduardo Luna de Melo Guilherme Sales Soares de Azevedo Melo 《Journal of Civil Engineering and Architecture》 2016年第1期53-63,共11页
A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failur... A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failure are presented and compared to results from a numerical nonlinear model. The tests involved 10 columns with cross-section of 250 mm × 120 mm, geometrical reinforcement ratio of 1.57% and concrete with compression strength around 40 MPa, with 3,000 mm in length. The main variable was the load eccentricity in the direction of the smaller dimension of cross-section. Experimental results of ultimate load and of the evolution of transverse displacements and concrete strains are compared with the numerical results. The estimated results obtained by the numerical model are close to the experimental ones, being suitable for use in verification of elements under combined axial load and bending. 展开更多
关键词 COLUMNS reinforced concrete combined axial load and bending numerical analysis.
下载PDF
POSTBUCKLING OF IMPERFECT STIFFENED CYLINDRICAL SHELLS UNDER COMBINED EXTERNAL PRESSURE AND HEATING
13
作者 沈惠申 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第5期411-423,共16页
A postbuckling analysis is presented for a stiffened cylindrical shell of finite length subjected to combined loading of external pressure and a uniform temperature rise. The formulations are based on a boundary layer... A postbuckling analysis is presented for a stiffened cylindrical shell of finite length subjected to combined loading of external pressure and a uniform temperature rise. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, nonlinear large deflections in the postbuckling range and initial geometrical imperfections of the shell. The 'smeared stiffener' approach is adopted for the stiffeners. The analysis uses a singular perturbation technique to determine the interactive buckling loads and the postbuckling equilibrium paths. Numerical examples cover the performances of perfect and imperfect, stringer and ring stiffened cylindrical shells. Typical results are presented in dimensionless graphical form. 展开更多
关键词 POSTBUCKLING thermal postbuckling stiffened cylindrical shell combined loading a boundary layer theory of shell buckling singular perturbation technique
下载PDF
Segmental Bridges under Combined Torsion, Bending and Shear
14
作者 黄真 刘西拉 《Journal of Shanghai Jiaotong university(Science)》 EI 2003年第2期111-114,共4页
Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmen... Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmental bridge with unbonded tendons under combined loading of torsion, bending and shear. According to the experiment research, a modified skew bending model was developed to calculate the bearing capacity of segmental bridges subjected to combined bending, shear and torsion. The finite element method was used to investigate the deflection behaviors of such structure, also to check the theoretical model. The theoretical and FEM research results were compared favorably with the test results from Technical University of Braunschweig, Germany. Finally, suggestion for the design and construction of segmental bridges with external prestressing was made. 展开更多
关键词 unbonded prestressing tendons segmental bridge combined loading of torsion bending and shear
下载PDF
A New Fracture Criterion for a Crack under Combined Mode Loading
15
作者 周小平 王建华 《Journal of Shanghai Jiaotong university(Science)》 EI 2003年第1期89-91,共3页
A new fracture criterion was proposed. The physical explanation of the criterion is that crack will propagate when the minimum strain energy density in iso hoop stress curve reach a critical strength of the material c... A new fracture criterion was proposed. The physical explanation of the criterion is that crack will propagate when the minimum strain energy density in iso hoop stress curve reach a critical strength of the material considered. The resulting curve of critical fracture of mixed mode cracks shows that the present fracture is efficient and more accurate than the previous criteria. 展开更多
关键词 fracture criterion combined mode loading minimum strain energy density in iso hoop stress curve
下载PDF
LARGE DEFLECTION PROBLEM OF CIRCULAR PLATES WITH VARIABLE THICKNESS UNDER THE ACTION OF COMBINED LOADS
16
作者 王新志 徐鉴 王林祥 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第9期817-827,共11页
By using the modified iteration method of large deflection theory of plates with variable thichness[1], we solve the problem of circular plates with variable thickness subjected to combined loads under the boundary co... By using the modified iteration method of large deflection theory of plates with variable thichness[1], we solve the problem of circular plates with variable thickness subjected to combined loads under the boundary conditions of the clamped edges and get comparatively more accurate second-order approximate analytical solution. If the results of this paper are degraded into the special cases, the results coinciding with those of papers [1,2] can be obtained. In this paper, the characteristic curves are plotted and some comparisons are made. The results of this paper are satisfactory. 展开更多
关键词 WANG LARGE DEFLECTION PROBLEM OF CIRCULAR PLATES WITH VARIABLE THICKNESS UNDER THE ACTION OF combined LOADS
下载PDF
Transformation Matrix for Combined Loads Applied to Thin-Walled Structures
17
作者 Abdelraouf M. Sami Alsheikh David William Alan Rees 《World Journal of Mechanics》 2022年第6期65-78,共14页
This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with... This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with respect to the shear centre is derived, this accounting for the bimoments that develop due to the way the combined loads are applied. This and the authors’ earlier paper (World Journal of Mechanics 2021, 11, 205-236) provide a full solution to the theory of thin-walled, open-section structures bearing combined loading. The earlier work identified arbitrary loading with the section’s area properties that are necessary to axial and shear stress calculations within the structure’s thin walls. In the previous paper attention is paid to the relevant axes of loading and to the transformations of loading required between axes for stress calculations arising from tension/compression, bending, torsion and shear. The derivation of the general transformation matrix applies to all types of loadings including, axial tensile and compression forces, transverse shear, longitudinal bending. One application, representing all these load cases, is given of a simple channel cantilever with an eccentrically located end load. 展开更多
关键词 Thin-Walled Structure Open Sections Transformation Matrix Load Transformation combined Load Transformation Shear Centre WARPING BIMOMENT Sectorial Area Properties
下载PDF
Fatigue Life of Slewing Bearings under Combined Radial,Axial and Tilting Moment Loads
18
作者 LI Yun-feng WU Zong-yan +2 位作者 LU Bing-heng ZHAO Guang-yan SUN Li-ming 《International Journal of Plant Engineering and Management》 2010年第2期79-82,共4页
A calculation method of fatigue life for slewing bearings under combined radial, axial and tilting moment loads was proposed. Single row four-point contact ball slewing bearing being used as a case, the statics model ... A calculation method of fatigue life for slewing bearings under combined radial, axial and tilting moment loads was proposed. Single row four-point contact ball slewing bearing being used as a case, the statics model of the slewing bearing was established and a set of equilibrium equations were obtained. By solving the equilibrium equatioas, the rolling element loads were obtained and the equivalent rolling element loads were calculated further. By using the geometrical parameters of the bearing, the rating rolling element loads were calculated, and the fa- tigue life of the bearing was calculated by using the rating rolling element loads and the equivalent rolling element loads. A calculation example shows the feasibility of the proposed method. 展开更多
关键词 fatigue life slewing bearings combined loads
下载PDF
Mechanical responses of anchoring structure under triaxial cyclic loading 被引量:2
19
作者 Peng Wang Nong Zhang +5 位作者 Qun Wei Xingliang Xu Guangzhen Cui Aoran Li Sen Yang Jiaguang Kan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期545-560,共16页
Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the inves... Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification. 展开更多
关键词 Triaxial stress Dynamic-static combination load Cyclic loading Anchoring structure(AS) Cumulative damage
下载PDF
Similarity Criterion and Scale Effect for Ship Distortion Model Under Combined Loads
20
作者 ZHANG Yi-long WEI Peng-yu +3 位作者 DAI Ze-yu WANG Lian ZENG Qing-bo TANG Qin 《船舶力学》 EI 2024年第12期1880-1890,共11页
For the ultimate strength model test evaluation of large ship structures, the distortion model with non-uniform ratio between the main size and the plate thickness size is usually adopted. It is the key to carry out s... For the ultimate strength model test evaluation of large ship structures, the distortion model with non-uniform ratio between the main size and the plate thickness size is usually adopted. It is the key to carry out scale model test to establish a distortion model similar to the real ship structure under combined load. A similarity criterion for ship distortion model under the combined action of bending moment and surface pressure was proposed, and the scale effect for the criterion was verified by a se ries of numerical analysis and model tests. The results show that the similarity criterion for ship distor tion model under combined loads has a certain scale effect. For the model tests of ship cabin struc tures, it is suggested that the scale range between the plate thickness scale and the main dimension scale should be controlled within 2:1, which can be used as a reference for distortion model design and ultimate strength test of large-scale ship structures. 展开更多
关键词 distortion model combined load similarity criteria scale effect ultimate strength test
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部