Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r...Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield.展开更多
For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chippin...For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM combined with ultrasonic vibration is studied, the servomechanism of which is composed of the stepping motor comprising variable steps and the inductive synchronizer. The fuzzy control technology is used to realize the control of the frequency and the step of the servomechanism. The adaptive fuzzy controller has three inputs and two outputs, which can well meet the actual control requirements. The constitution of the fuzzy control regulation for the step frequency is the key to the design of the whole fuzzy control system of the servomechanism. The step frequency is mainly determined by the position error and the change rate of the position error. When the value of the position error is high or medium, the controlled parameters are selected to eliminate the error; when the position error is lower, the controlled parameters are selected to avoid the over-orientation and thus keep the stability of the system. According to these, a fuzzy control table is established in advanced, which is used to express the relations between the fuzzy input parameters and the fuzzy output parameters. The input parameters and the output parameters are all expressed by the level-values in fuzzy field. Therefore, the output parameters used for control can be obtained for the fuzzy control table according to the detected actual input parameters, by which the EDM combined with ultrasonic vibration is improved and the machining efficiency is increased. In addition, a stimulation program is designed by means of Microsoft Visual Basic展开更多
Influenced by its training corpus,the performance of different machine translation systems varies greatly.Aiming at achieving higher quality translations,system combination methods combine the translation results of m...Influenced by its training corpus,the performance of different machine translation systems varies greatly.Aiming at achieving higher quality translations,system combination methods combine the translation results of multiple systems through statistical combination or neural network combination.This paper proposes a new multi-system translation combination method based on the Transformer architecture,which uses a multi-encoder to encode source sentences and the translation results of each system in order to realize encoder combination and decoder combination.The experimental verification on the Chinese-English translation task shows that this method has 1.2-2.35 more bilingual evaluation understudy(BLEU)points compared with the best single system results,0.71-3.12 more BLEU points compared with the statistical combination method,and 0.14-0.62 more BLEU points compared with the state-of-the-art neural network combination method.The experimental results demonstrate the effectiveness of the proposed system combination method based on Transformer.展开更多
Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The cl...Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term dis-turbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages.展开更多
Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machin...Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machine.This paper presents a double-stator dislocated axial flux permanent magnet machine with combined wye-delta winding.A wye-delta(Y-△)winding connection method is designed to eliminate the 6 th ripple torque generated by air gap magnetic field harmonics.Then,the accurate subdomain method is adopted to acquire the no-load and armature magnetic fields of the machine,respectively,and the magnetic field harmonics and torque performance of the designed machine are analyzed.Finally,a 6 k W,4000 r/min,18-slot/16-pole axial flux permanent magnet machine is designed.The finite element simulation results show that the proposed machine can effectively eliminate the 6 th ripple torque and greatly reduce the torque ripple while the average torque is essentially identical to that of the conventional three-phase machines with wye-winding connection.展开更多
Single-drug therapies or monotherapies are often inadequate,particularly in the case of life-threatening diseases like cancer.Consequently,combination therapies emerge as an attractive strategy.Cancer nanomedicines ha...Single-drug therapies or monotherapies are often inadequate,particularly in the case of life-threatening diseases like cancer.Consequently,combination therapies emerge as an attractive strategy.Cancer nanomedicines have many benefits in addressing the challenges faced by small molecule therapeutic drugs,such as low water solubility and bioavailability,high toxicity,etc.However,it remains a significant challenge in encapsulating two drugs in a nanoparticle.To address this issue,computational methodologies are employed to guide the rational design and synthesis of dual-drug-loaded polymer nanoparticles while achieving precise control over drug loading.Based on the sequential nanoprecipitation technology,five factors are identified that affect the formulation of drug candidates into dual-drug loaded nanoparticles,and then screened 176 formulations under different experimental conditions.Based on these experimental data,machine learning methods are applied to pin down the key factors.The implementation of this methodology holds the potential to signif-icantly mitigate the complexities associated with the synthesis of dual-drug loaded nanoparticles,and the co-assembly of these compounds into nanoparticulate systems demonstrates a promising avenue for combination therapy.This approach provides a new strategy for enabling the streamlined,high-throughput screening and synthesis of new nanoscale drug-loaded entities.展开更多
Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are...Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation.展开更多
Organic rich laminated shale is one type of favorable reservoirs for exploration and development of continental shale oil in China.However,with limited geological data,it is difficult to predict the spatial distributi...Organic rich laminated shale is one type of favorable reservoirs for exploration and development of continental shale oil in China.However,with limited geological data,it is difficult to predict the spatial distribution of laminated shale with great vertical heterogeneity.To solve this problem,taking Chang 73 sub-member in Yanchang Formation of Ordos Basin as an example,an idea of predicting lamina combinations by combining'conventional log data-mineral composition prediction-lamina combination type identification'has been worked out based on machine learning under supervision on the premise of adequate knowledge of characteristics of lamina mineral components.First,the main mineral components of the work area were figured out by analyzing core data,and the log data sensitive to changes of the mineral components was extracted;then machine learning was used to construct the mapping relationship between the two;based on the variations in mineral composition,the lamina combination types in typical wells of the research area were identified to verify the method.The results show the approach of'conventional log data-mineral composition prediction-lamina combination type identification'works well in identifying the types of shale lamina combinations.The approach was applied to Chang 73 sub-member in Yanchang Formation of Ordos Basin to find out planar distribution characteristics of the laminae.展开更多
Cogging torque and electromagnetic vibration are two important factors for evaluating permanent magnet synchronous machine(PMSM)and are key issues that must be considered and resolved in the design and manufacture of ...Cogging torque and electromagnetic vibration are two important factors for evaluating permanent magnet synchronous machine(PMSM)and are key issues that must be considered and resolved in the design and manufacture of high-performance PMSM for electric vehicles.A fast and accurate magnetic field calculation model for interior permanent magnet synchronous machine(IPMSM)is proposed in this article.Based on the traditional magnetic potential permeance method,the stator cogging effect and complex boundary conditions of the IPMSM can be fully considered in this model,so as to realize the rapid calculation of equivalent magnetomotive force(MMF),air gap permeance,and other key electromagnetic properties.In this article,a 6-pole 36-slot IPMSM is taken as an example to establish its equivalent solution model,thereby the cogging torque is accurately calculated.And the validity of this model is verified by a variety of different magnetic pole structures,pole slot combinations machines,and prototype experiments.In addition,the improvement measure of the machine with different combination of pole arc coefficient is also studied based on this model.Cogging torque and electromagnetic vibration can be effectively weakened.Combined with the finite element model and multi-physics coupling model,the electromagnetic characteristics and vibration performance of this machine are comprehensively compared and analyzed.The analysis results have well verified its effectiveness.It can be extended to other structures or types of PMSM and has very important practical value and research significance.展开更多
In this paper, we propose to enhance machine translation system combination (MTSC) with a sentence-level paraphrasing model trained by a neural network. This work extends the number of candidates in MTSC by paraphrasi...In this paper, we propose to enhance machine translation system combination (MTSC) with a sentence-level paraphrasing model trained by a neural network. This work extends the number of candidates in MTSC by paraphrasing the whole original MT translation sentences. First we train a neural paraphrasing model of Encoder-Decoder, and leverage the model to paraphrase the MT system outputs to generate synonymous candidates in the semantic space. Then we merge all of them into a single improved translation by a state-of-the-art system combination approach (MEMT) adding some new paraphrasing features. Our experimental results show a significant improvement of 0.28 BLEU points on the WMT2011 test data and 0.41 BLEU points without considering the out-of-vocabulary (OOV) words for the sentence-level paraphrasing model.展开更多
Oilseed rape is an important oilseed crop planted worldwide.Maturity classification plays a crucial role in enhancing yield and expediting breeding research.Conventional methods of maturity classification are laboriou...Oilseed rape is an important oilseed crop planted worldwide.Maturity classification plays a crucial role in enhancing yield and expediting breeding research.Conventional methods of maturity classification are laborious and destructive in nature.In this study,a nondestructive classification model was established on the basis of hyperspectral imaging combined with machine learning algorithms.Initially,hyperspectral images were captured for 3 distinct ripeness stages of rapeseed,and raw spectral data were extracted from the hyperspectral images.The raw spectral data underwent preprocessing using 5 pretreatment methods,namely,Savitzky-Golay,first derivative,second derivative(D2nd),standard normal variate,and detrend,as well as various combinations of these methods.Subsequently,the feature wavelengths were extracted from the processed spectra using competitive adaptive reweighted sampling,successive projection algorithm(SPA),iterative spatial shrinkage of interval variables(IVISSA),and their combination algorithms,respectively.The classification models were constructed using the following algorithms:extreme learning machine,k-nearest neighbor,random forest,partial least-squares discriminant analysis,and support vector machine(SVM)algorithms,applied separately to the full wavelength and the feature wavelengths.A comparative analysis was conducted to evaluate the performance of diverse preprocessing methods,feature wavelength selection algorithms,and classification models,and the results showed that the model based on preprocessing-feature wavelength selection-machine learning could effectively predict the maturity of rapeseed.The D2nd-IVISSA-SPA-SVM model exhibited the highest modeling performance,attaining an accuracy rate of 97.86%.The findings suggest that rapeseed maturity can be rapidly and nondestructively ascertained through hyperspectral imaging.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.52079103)。
文摘Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield.
文摘For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM combined with ultrasonic vibration is studied, the servomechanism of which is composed of the stepping motor comprising variable steps and the inductive synchronizer. The fuzzy control technology is used to realize the control of the frequency and the step of the servomechanism. The adaptive fuzzy controller has three inputs and two outputs, which can well meet the actual control requirements. The constitution of the fuzzy control regulation for the step frequency is the key to the design of the whole fuzzy control system of the servomechanism. The step frequency is mainly determined by the position error and the change rate of the position error. When the value of the position error is high or medium, the controlled parameters are selected to eliminate the error; when the position error is lower, the controlled parameters are selected to avoid the over-orientation and thus keep the stability of the system. According to these, a fuzzy control table is established in advanced, which is used to express the relations between the fuzzy input parameters and the fuzzy output parameters. The input parameters and the output parameters are all expressed by the level-values in fuzzy field. Therefore, the output parameters used for control can be obtained for the fuzzy control table according to the detected actual input parameters, by which the EDM combined with ultrasonic vibration is improved and the machining efficiency is increased. In addition, a stimulation program is designed by means of Microsoft Visual Basic
基金Supported by the National Key Research and Development Program of China(No.2019YFA0707201)the Fund of the Institute of Scientific and Technical Information of China(No.ZD2021-17).
文摘Influenced by its training corpus,the performance of different machine translation systems varies greatly.Aiming at achieving higher quality translations,system combination methods combine the translation results of multiple systems through statistical combination or neural network combination.This paper proposes a new multi-system translation combination method based on the Transformer architecture,which uses a multi-encoder to encode source sentences and the translation results of each system in order to realize encoder combination and decoder combination.The experimental verification on the Chinese-English translation task shows that this method has 1.2-2.35 more bilingual evaluation understudy(BLEU)points compared with the best single system results,0.71-3.12 more BLEU points compared with the statistical combination method,and 0.14-0.62 more BLEU points compared with the state-of-the-art neural network combination method.The experimental results demonstrate the effectiveness of the proposed system combination method based on Transformer.
基金Project (No. 50437010) supported by the Key Program of the Na-tional Natural Science Foundation of China
文摘Power Quality (PQ) combined disturbances become common along with ubiquity of voltage flickers and harmonics. This paper presents a novel approach to classify the different patterns of PQ combined disturbances. The classification system consists of two parts, namely the feature extraction and the automatic recognition. In the feature extraction stage, Phase Space Reconstruction (PSR), a time series analysis tool, is utilized to construct disturbance signal trajectories. For these trajectories, several indices are proposed to form the feature vectors. Support Vector Machines (SVMs) are then implemented to recognize the different patterns and to evaluate the efficiencies. The types of disturbances discussed include a combination of short-term dis-turbances (voltage sags, swells) and long-term disturbances (flickers, harmonics), as well as their homologous single ones. The feasibilities of the proposed approach are verified by simulation with thousands of PQ events. Comparison studies based on Wavelet Transform (WT) and Artificial Neural Network (ANN) are also reported to show its advantages.
基金supported in part by the National Natural Science Foundation of China Grant No.51877139。
文摘Conventional fractional slot concentrated winding three-phase axial flux permanent magnet machines have an abundance of armature reaction magnetic field harmonics which deteriorate the torque performance of the machine.This paper presents a double-stator dislocated axial flux permanent magnet machine with combined wye-delta winding.A wye-delta(Y-△)winding connection method is designed to eliminate the 6 th ripple torque generated by air gap magnetic field harmonics.Then,the accurate subdomain method is adopted to acquire the no-load and armature magnetic fields of the machine,respectively,and the magnetic field harmonics and torque performance of the designed machine are analyzed.Finally,a 6 k W,4000 r/min,18-slot/16-pole axial flux permanent magnet machine is designed.The finite element simulation results show that the proposed machine can effectively eliminate the 6 th ripple torque and greatly reduce the torque ripple while the average torque is essentially identical to that of the conventional three-phase machines with wye-winding connection.
基金Australian National Health and Medical Research Council,Grant/Award Number:APP2008698Australian Research Council,Grant/Award Number:DE230101044。
文摘Single-drug therapies or monotherapies are often inadequate,particularly in the case of life-threatening diseases like cancer.Consequently,combination therapies emerge as an attractive strategy.Cancer nanomedicines have many benefits in addressing the challenges faced by small molecule therapeutic drugs,such as low water solubility and bioavailability,high toxicity,etc.However,it remains a significant challenge in encapsulating two drugs in a nanoparticle.To address this issue,computational methodologies are employed to guide the rational design and synthesis of dual-drug-loaded polymer nanoparticles while achieving precise control over drug loading.Based on the sequential nanoprecipitation technology,five factors are identified that affect the formulation of drug candidates into dual-drug loaded nanoparticles,and then screened 176 formulations under different experimental conditions.Based on these experimental data,machine learning methods are applied to pin down the key factors.The implementation of this methodology holds the potential to signif-icantly mitigate the complexities associated with the synthesis of dual-drug loaded nanoparticles,and the co-assembly of these compounds into nanoparticulate systems demonstrates a promising avenue for combination therapy.This approach provides a new strategy for enabling the streamlined,high-throughput screening and synthesis of new nanoscale drug-loaded entities.
文摘Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation.
基金co-supported by the National Natural Science Foundation of China(Grant Nos.U1762217,42072161)。
文摘Organic rich laminated shale is one type of favorable reservoirs for exploration and development of continental shale oil in China.However,with limited geological data,it is difficult to predict the spatial distribution of laminated shale with great vertical heterogeneity.To solve this problem,taking Chang 73 sub-member in Yanchang Formation of Ordos Basin as an example,an idea of predicting lamina combinations by combining'conventional log data-mineral composition prediction-lamina combination type identification'has been worked out based on machine learning under supervision on the premise of adequate knowledge of characteristics of lamina mineral components.First,the main mineral components of the work area were figured out by analyzing core data,and the log data sensitive to changes of the mineral components was extracted;then machine learning was used to construct the mapping relationship between the two;based on the variations in mineral composition,the lamina combination types in typical wells of the research area were identified to verify the method.The results show the approach of'conventional log data-mineral composition prediction-lamina combination type identification'works well in identifying the types of shale lamina combinations.The approach was applied to Chang 73 sub-member in Yanchang Formation of Ordos Basin to find out planar distribution characteristics of the laminae.
基金supported in part by the National Natural Science Foundation of China under Grant 51737008.
文摘Cogging torque and electromagnetic vibration are two important factors for evaluating permanent magnet synchronous machine(PMSM)and are key issues that must be considered and resolved in the design and manufacture of high-performance PMSM for electric vehicles.A fast and accurate magnetic field calculation model for interior permanent magnet synchronous machine(IPMSM)is proposed in this article.Based on the traditional magnetic potential permeance method,the stator cogging effect and complex boundary conditions of the IPMSM can be fully considered in this model,so as to realize the rapid calculation of equivalent magnetomotive force(MMF),air gap permeance,and other key electromagnetic properties.In this article,a 6-pole 36-slot IPMSM is taken as an example to establish its equivalent solution model,thereby the cogging torque is accurately calculated.And the validity of this model is verified by a variety of different magnetic pole structures,pole slot combinations machines,and prototype experiments.In addition,the improvement measure of the machine with different combination of pole arc coefficient is also studied based on this model.Cogging torque and electromagnetic vibration can be effectively weakened.Combined with the finite element model and multi-physics coupling model,the electromagnetic characteristics and vibration performance of this machine are comprehensively compared and analyzed.The analysis results have well verified its effectiveness.It can be extended to other structures or types of PMSM and has very important practical value and research significance.
基金This paper is supported by the project of Natural Science Foundation of China (Grant No. 61272384&61370170).
文摘In this paper, we propose to enhance machine translation system combination (MTSC) with a sentence-level paraphrasing model trained by a neural network. This work extends the number of candidates in MTSC by paraphrasing the whole original MT translation sentences. First we train a neural paraphrasing model of Encoder-Decoder, and leverage the model to paraphrase the MT system outputs to generate synonymous candidates in the semantic space. Then we merge all of them into a single improved translation by a state-of-the-art system combination approach (MEMT) adding some new paraphrasing features. Our experimental results show a significant improvement of 0.28 BLEU points on the WMT2011 test data and 0.41 BLEU points without considering the out-of-vocabulary (OOV) words for the sentence-level paraphrasing model.
基金supported by grants from the STI2030-Major ProjectsNational Key Research and Development Program(2022YFD1900701-4)+4 种基金National Natural Science Foundation of China(U21A20205)Key Projects of Natural Science Foundation of Hubei Province(2021CFA059)HZAU-AGIS Cooperation Fund(SZYJY2022014)Fundamental Research Funds for the Central Universities(2021ZKPY006 and 2662021JC008)the National Rape Crop Industry System Special Project Funding(CARS-12).
文摘Oilseed rape is an important oilseed crop planted worldwide.Maturity classification plays a crucial role in enhancing yield and expediting breeding research.Conventional methods of maturity classification are laborious and destructive in nature.In this study,a nondestructive classification model was established on the basis of hyperspectral imaging combined with machine learning algorithms.Initially,hyperspectral images were captured for 3 distinct ripeness stages of rapeseed,and raw spectral data were extracted from the hyperspectral images.The raw spectral data underwent preprocessing using 5 pretreatment methods,namely,Savitzky-Golay,first derivative,second derivative(D2nd),standard normal variate,and detrend,as well as various combinations of these methods.Subsequently,the feature wavelengths were extracted from the processed spectra using competitive adaptive reweighted sampling,successive projection algorithm(SPA),iterative spatial shrinkage of interval variables(IVISSA),and their combination algorithms,respectively.The classification models were constructed using the following algorithms:extreme learning machine,k-nearest neighbor,random forest,partial least-squares discriminant analysis,and support vector machine(SVM)algorithms,applied separately to the full wavelength and the feature wavelengths.A comparative analysis was conducted to evaluate the performance of diverse preprocessing methods,feature wavelength selection algorithms,and classification models,and the results showed that the model based on preprocessing-feature wavelength selection-machine learning could effectively predict the maturity of rapeseed.The D2nd-IVISSA-SPA-SVM model exhibited the highest modeling performance,attaining an accuracy rate of 97.86%.The findings suggest that rapeseed maturity can be rapidly and nondestructively ascertained through hyperspectral imaging.