At seasonal and intraseasonal time scales, polar motions are mainly excited by angular momentum fluctuations due to mass redistributions and relative motions in the atmosphere, oceans, and continental water, snow, and...At seasonal and intraseasonal time scales, polar motions are mainly excited by angular momentum fluctuations due to mass redistributions and relative motions in the atmosphere, oceans, and continental water, snow, and ice, which are usually provided by various global atmospheric, oceanic, and hydrological models(some with meteorological observations assimilated; e.g., NCEP, ECCO, ECMWF, OMCT and LSDM etc.). Unfortunately, these model outputs are far from perfect and have notable discrepancies with respect to polar motion observations, due to non-uniform distributions of meteorological observatories,as well as theoretical approximations and non-global mass conservation in these models. In this study,the LDC(Least Difference Combination) method is adopted to obtain some improved atmospheric,oceanic, and hydrological/crospheric angular momentum(AAM, OAM and HAM/CAM, respectively)functions and excitation functions(termed as the LDCgsm solutions). Various GRACE(Gravity Recovery and Climate Experiment) and SLR(Satellite Laser Ranging) geopotential data are adopted to correct the non-global mass conservation problem, while polar motion data are used as general constraints. The LDCgsm solutions can reveal not only periodic fluctuations but also secular trends in AAM, OAM and HAM/CAM, and are in better agreement with polar motion observations, reducing the unexplained excitation to the level of about 5.5 mas(standard derivation value; about 1/5-1/4 of those corresponding to the original model outputs).展开更多
Compliant translational joints (CTJs) have been extensively used in precision engineering and microelectromechanical systems (MEMS). There is an increasing need for designing higher-performance CTJs. This paper de...Compliant translational joints (CTJs) have been extensively used in precision engineering and microelectromechanical systems (MEMS). There is an increasing need for designing higher-performance CTJs. This paper deals with the conceptual design of CTJs via three approaches: parallelogram based method, straight- line motion mechanism based method and combination based method. Typical emerging CTJ designs are reviewed by explaining their design principles and qualitatively analyzing their characteristics. New CTJs are proposed using three approaches, including an asymmetric double parallelogram mechanism with slaving mechanism, several compact and symmetric double parallelogram mechanisms with slaving mechanisms and a general CTJ using the center drift compensation and a CTJ using Roberts linkage and several combination designs. This paper provides an overview of the current advances/progresses of CTJ designs and lays the foundation for further optimization, quantitative analysis and characteristic comparisons.展开更多
基金supported in parts by the National 973 Project of China(No.2013CB733301 and 2013CB733305)the National Natural Science Foundation of China(No.41474022,41210006 and 41374022)+2 种基金the R&D Special Fund for Public Welfare Industry(Surveying and Mapping,No.201512001)the Fundamental Research Funds for the Central Universities of China(No.2042016kf0146)the China Postdoctoral Science Foundation(No.2014T70737)
文摘At seasonal and intraseasonal time scales, polar motions are mainly excited by angular momentum fluctuations due to mass redistributions and relative motions in the atmosphere, oceans, and continental water, snow, and ice, which are usually provided by various global atmospheric, oceanic, and hydrological models(some with meteorological observations assimilated; e.g., NCEP, ECCO, ECMWF, OMCT and LSDM etc.). Unfortunately, these model outputs are far from perfect and have notable discrepancies with respect to polar motion observations, due to non-uniform distributions of meteorological observatories,as well as theoretical approximations and non-global mass conservation in these models. In this study,the LDC(Least Difference Combination) method is adopted to obtain some improved atmospheric,oceanic, and hydrological/crospheric angular momentum(AAM, OAM and HAM/CAM, respectively)functions and excitation functions(termed as the LDCgsm solutions). Various GRACE(Gravity Recovery and Climate Experiment) and SLR(Satellite Laser Ranging) geopotential data are adopted to correct the non-global mass conservation problem, while polar motion data are used as general constraints. The LDCgsm solutions can reveal not only periodic fluctuations but also secular trends in AAM, OAM and HAM/CAM, and are in better agreement with polar motion observations, reducing the unexplained excitation to the level of about 5.5 mas(standard derivation value; about 1/5-1/4 of those corresponding to the original model outputs).
文摘Compliant translational joints (CTJs) have been extensively used in precision engineering and microelectromechanical systems (MEMS). There is an increasing need for designing higher-performance CTJs. This paper deals with the conceptual design of CTJs via three approaches: parallelogram based method, straight- line motion mechanism based method and combination based method. Typical emerging CTJ designs are reviewed by explaining their design principles and qualitatively analyzing their characteristics. New CTJs are proposed using three approaches, including an asymmetric double parallelogram mechanism with slaving mechanism, several compact and symmetric double parallelogram mechanisms with slaving mechanisms and a general CTJ using the center drift compensation and a CTJ using Roberts linkage and several combination designs. This paper provides an overview of the current advances/progresses of CTJ designs and lays the foundation for further optimization, quantitative analysis and characteristic comparisons.