In periurban zones, urban wet weather discharges have been recognized as the most significant vector of pollution in aquatic environments. The discharge of this water without treatment into the aquatic environment cou...In periurban zones, urban wet weather discharges have been recognized as the most significant vector of pollution in aquatic environments. The discharge of this water without treatment into the aquatic environment could present an ecotoxicological risk for biocenosis. The aim of the INVASION project is to assess the potential ecotoxicological impact of a combined sewer overflow (CSO) on a peri-urban stream. A comparative study between upstream and downstream areas of the CSO allowed observing significant effects of this overflow on the river. We studied three layers of stream: surface water, benthic layer and hyporheic layer. To characterize the potential ecotoxicological risk of water and sediments, we used a battery of 4 bioassays: Daphnia magna, Vibrio fischeri, Brachionus calyciflorus and Heterocypris incongruens. In parallel, we measured the physico-chemical parameters: ammonium (NH4+), chromium (Cr), copper (Cu) and lead (Pb). An ecological risk is greatest for the hyporheic zone in downstream river, particularly for the solid phase. These results corroborated with the physico-chemical data obtained.展开更多
Stimulated by the recent USEPA's green stormwater infrastructure (GSI) guidance and policies, GS1 systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also kn...Stimulated by the recent USEPA's green stormwater infrastructure (GSI) guidance and policies, GS1 systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also known as low impact development (LID) approaches. To quantitatively evaluate the performance of GSI systems on CSO and urban flooding control, USEPA-Stormwater Management Model (SWMM) model was adopted in this study to simulate the behaviors of GSI systems in a well- developed urban drainage area, PSW45, under different circumstances. The impact of different percentages of stormwater runoff transported from impervious surfaces to the GSI systems on CSO and urban flooding control has also been investigated. Results show that with current buildup, GSI systems in PSW45 have the best performance for low intensity and short duration events on both volume and peak flow reductions, and have the worst pertbrmance tor high intensity and long durataon events. Since the low intensity and short duration events are dominant from a long-term perspective, utilizing GSI systems is considered as an effective measure of CSO control to meet the long-term controlstrategy for PSW45 watershed. However, GSI systems are not suitable for the flooding control purpose in PSW45 due to the high occurrence possibility of urban flooding during or after high intensity events where GSI systems have relatively poor performance no matter for a short or long duration event,展开更多
In order to control combined system overflow (CSO) pollution of regional sewer systems in Shanghai,a global optimal control (GOC) is presented in this study.The GOC is based on the analysis of current situation and ca...In order to control combined system overflow (CSO) pollution of regional sewer systems in Shanghai,a global optimal control (GOC) is presented in this study.The GOC is based on the analysis of current situation and can maximize the utilization of the free storage of each sub systems and decrease the frequencies and durations of CSOs and flooding.A representative regional sewer system,which is located in the northwest of Shanghai and composed of sub systems of Zhenguang,Zhenru and Tongchuan,was taken as an example to demonstrate the efficiency of GOC with hydraulic model simulation test in the two representative scenarios (Scenario Ⅰ and Ⅱ).The results indicated that a great improvement in CSO emission is obtained by using the GOC in the two scenarios,and the CSO volume of three sub systems,Zhenru,Tongchuan and Zhenguang decreases to about 37.0%,38.3% and 35.7% in Scenario Ⅰ and 47.5%,51.8% and 63.5% in Scenario Ⅱ respectively.展开更多
The Korea government has put in a lot of effort to construct sanitation facilities for controlling non-point source pollution. The first flush phenomenon is a prime example of such pollution. However, to date, several...The Korea government has put in a lot of effort to construct sanitation facilities for controlling non-point source pollution. The first flush phenomenon is a prime example of such pollution. However, to date, several serious problems have arisen in the operation and treatment effectiveness of these facilities due to unsuitable design flow volumes and pollution loads. It is difficult to assess the optimal flow volume and pollution mass when considering both monetary and temporal limitations. The objective of this article was to characterize the discharge of storm runoff pollution from urban catchments in Korea and to estimate the probability of mass first flush (MFFn) using the storm water management model and probability density functions. As a result of the review of gauged storms for the representative using probability density function with rainfall volumes during the last two years, all the gauged storms were found to be valid representative precipitation. Both the observed MFFn and probability MFFn in BE-1 denoted similarly large magnitudes of first flush with roughly 40% of the total pollution mass contained in the first 20% of the runoff. In the case of BE-2, however, there were significant difference between the observed MFFn and probability MFFn.展开更多
文摘In periurban zones, urban wet weather discharges have been recognized as the most significant vector of pollution in aquatic environments. The discharge of this water without treatment into the aquatic environment could present an ecotoxicological risk for biocenosis. The aim of the INVASION project is to assess the potential ecotoxicological impact of a combined sewer overflow (CSO) on a peri-urban stream. A comparative study between upstream and downstream areas of the CSO allowed observing significant effects of this overflow on the river. We studied three layers of stream: surface water, benthic layer and hyporheic layer. To characterize the potential ecotoxicological risk of water and sediments, we used a battery of 4 bioassays: Daphnia magna, Vibrio fischeri, Brachionus calyciflorus and Heterocypris incongruens. In parallel, we measured the physico-chemical parameters: ammonium (NH4+), chromium (Cr), copper (Cu) and lead (Pb). An ecological risk is greatest for the hyporheic zone in downstream river, particularly for the solid phase. These results corroborated with the physico-chemical data obtained.
文摘Stimulated by the recent USEPA's green stormwater infrastructure (GSI) guidance and policies, GS1 systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also known as low impact development (LID) approaches. To quantitatively evaluate the performance of GSI systems on CSO and urban flooding control, USEPA-Stormwater Management Model (SWMM) model was adopted in this study to simulate the behaviors of GSI systems in a well- developed urban drainage area, PSW45, under different circumstances. The impact of different percentages of stormwater runoff transported from impervious surfaces to the GSI systems on CSO and urban flooding control has also been investigated. Results show that with current buildup, GSI systems in PSW45 have the best performance for low intensity and short duration events on both volume and peak flow reductions, and have the worst pertbrmance tor high intensity and long durataon events. Since the low intensity and short duration events are dominant from a long-term perspective, utilizing GSI systems is considered as an effective measure of CSO control to meet the long-term controlstrategy for PSW45 watershed. However, GSI systems are not suitable for the flooding control purpose in PSW45 due to the high occurrence possibility of urban flooding during or after high intensity events where GSI systems have relatively poor performance no matter for a short or long duration event,
文摘In order to control combined system overflow (CSO) pollution of regional sewer systems in Shanghai,a global optimal control (GOC) is presented in this study.The GOC is based on the analysis of current situation and can maximize the utilization of the free storage of each sub systems and decrease the frequencies and durations of CSOs and flooding.A representative regional sewer system,which is located in the northwest of Shanghai and composed of sub systems of Zhenguang,Zhenru and Tongchuan,was taken as an example to demonstrate the efficiency of GOC with hydraulic model simulation test in the two representative scenarios (Scenario Ⅰ and Ⅱ).The results indicated that a great improvement in CSO emission is obtained by using the GOC in the two scenarios,and the CSO volume of three sub systems,Zhenru,Tongchuan and Zhenguang decreases to about 37.0%,38.3% and 35.7% in Scenario Ⅰ and 47.5%,51.8% and 63.5% in Scenario Ⅱ respectively.
文摘The Korea government has put in a lot of effort to construct sanitation facilities for controlling non-point source pollution. The first flush phenomenon is a prime example of such pollution. However, to date, several serious problems have arisen in the operation and treatment effectiveness of these facilities due to unsuitable design flow volumes and pollution loads. It is difficult to assess the optimal flow volume and pollution mass when considering both monetary and temporal limitations. The objective of this article was to characterize the discharge of storm runoff pollution from urban catchments in Korea and to estimate the probability of mass first flush (MFFn) using the storm water management model and probability density functions. As a result of the review of gauged storms for the representative using probability density function with rainfall volumes during the last two years, all the gauged storms were found to be valid representative precipitation. Both the observed MFFn and probability MFFn in BE-1 denoted similarly large magnitudes of first flush with roughly 40% of the total pollution mass contained in the first 20% of the runoff. In the case of BE-2, however, there were significant difference between the observed MFFn and probability MFFn.