The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal m...The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal model of such an engine above,a mathematical model of a refitted engine is provided.The boundary of the corresponding economical zone is further demarcated,and the optimal operating curve and the operating point of the engine are analyzed.Then,the energy transforming models of the power system are established in the mode of cooling,heating and power(MCHP),the mode of heating and power(MHP)and the mode of electricity powering(MEP).The parameter matching of the power system is optimized according to the transmission ratios of the gear box in the power distribution system.The results show that,in the MCHP,the speed transmission ratio of the engine to the gear box(ies)and the speed transmission ratio of the motor to the gear box(ims)are defined as 2.9 and 1,respectively;in the MHP,when the demand load of the power system is less than the low critical load of the economical zone,the speed transmission ratio of the motor to the engine(ime)is equal to 1,and when the demand load of the power system exceeds the low critical load of the economical zone,ime equals 0.85;in the MEP,the optimal value of ims is defined as 2.5.展开更多
The important indications for assessing CCHP(combined cooling,heating and power)systems are their supply-demand matching characteristics between the user demand side and the energy supply side.These characteristics ar...The important indications for assessing CCHP(combined cooling,heating and power)systems are their supply-demand matching characteristics between the user demand side and the energy supply side.These characteristics are primarily influenced by different building types and operating strategies.In view of the energy redundancy of the following electric load(FEL)and following thermal load(FTL)operation strategies and the energy deficiency of the following hybrid electric-heating load(FHL)operation strategy,this paper proposes an improved following balanced heat-electrical load(IFBL)operation strategy based on the following balanced heat-electrical load(FBL)operation strategy.Based on the energy utilization rate as the objective function,this paper optimizes the installed capacity of CCHP systems in different buildings and proposes an energy factor for evaluating the supply-demand matching characteristics of the system.The results show that the energy utilization rate and energy factor of the system under IFBL are optimal relative to the other operation strategies.Secondly,the hotel building has the highest energy utilization rate and the lowest energy factor;on the contrary,the office building has the lowest energy utilization rate and the highest energy factor.Finally,the analysis of supply-demand matching for different building types under multiple operating strategies shows that the hospital and hotel systems exhibit optimal supply-demand matching performance under the IFBL strategy,with values of 0.945 and 0.938,respectively;on the contrary,the office system has an optimal supply-demand matching of 0.935 under the FEL strategy.Under the FTL strategy,the systems of all three buildings exhibit poor matching performance.展开更多
Between 2018 and 2020, an average of 15 TWh of energy peat was consumed in Finland. Energy peat is used in 260 boilers in Finland, which produce district heat and heat and steam for industry, as well as electricity as...Between 2018 and 2020, an average of 15 TWh of energy peat was consumed in Finland. Energy peat is used in 260 boilers in Finland, which produce district heat and heat and steam for industry, as well as electricity as cogeneration (CHP) in connection with district heating and industrial heat production. Peat accounts for 3% - 5% of the energy sources used in Finland, but its importance has been greater in terms of security of supply. With current use in accordance with the 2018-2020 average, the emissions from peat are almost 6 Mt CO<sub>2</sub> per year in Finland, which is 15% of emissions from the energy sector. In this study, the technical limitations related to peat burning, economic limitations related to the availability of biomass, and socio-economic limitations related to the regional economy are reviewed. By 2040, the technical minimum use of peat will fall to 2 TWh. The techno-economical potential may be even lower, but due to socio-economic objectives, peat production will not be completely ceased. The reduction in the minimum share assumes that old peat boilers are replaced with new biomass boilers or are alternatively replaced by other forms of heat production. Based on the biomass reserves, the current use of peat can be completely replaced by forest chips, but regional challenges may occur along the coast and in southern Finland. It is unlikely that the current demand for all peat will be fully replaced by biomass when part of CHP production is replaced by heat production alone and combustion with waste heat sources.展开更多
先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具备天然的热电联供特性,能够有效缓解供热期出现的弃风问题。若能在规划阶段充分考虑运行需求,进而合理地配置储能容量,则能够在解决弃风问题的前提下...先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具备天然的热电联供特性,能够有效缓解供热期出现的弃风问题。若能在规划阶段充分考虑运行需求,进而合理地配置储能容量,则能够在解决弃风问题的前提下,最大程度对燃煤机组进行清洁替代。为此,该文提出了多热源协同互补的AA-CAES系统容量配置模型。首先本模型在能量输入端引入电锅炉预热压缩机入口空气,以增大压缩机输气系数并提高机组产热量;其次在扩展热源端,通过太阳能反射镜场收集光热,以提高系统储热水平;并在计及储能系统各模块实际运行效率约束之余,以运行总成本最小为目标,计算储能容量配置最优解。再次,分析供热时长及环境温度等因素对投资成本回收年限的影响,并计算不同情况下本模型投资成本的回收年限,得出建设本模型可盈利的硬性条件;最后,基于东北某地区供热期及非供热期典型日负荷及气象数据在IEEE-39节点系统完成算例分析,验证所提模型有效性。展开更多
Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range o...Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range of charging pressure(1 to 21 MPa).Our analyses show that the baseline LAES could achieve an electrical round trip efficiency(e RTE)above 60%at a high charging pressure of 19 MPa.The baseline LAES,however,produces a large amount of excess heat particularly at low charging pressures with the maximum occurred at~1 MPa.Hence,the performance of the baseline LAES,especially at low charging pressures,is underestimated by only considering electrical energy in all the previous research.The performance of the baseline LAES with excess heat is then evaluated which gives a high e RTE even at lower charging pressures;the local maximum of 62%is achieved at~4 MPa.As a result of the above,a hybrid LAES system is proposed to provide cooling,heating,hot water and power.To evaluate the performance of the hybrid LAES system,three performance indicators are considered:nominal-electrical round trip efficiency(ne RTE),primary energy savings and avoided carbon dioxide emissions.Our results show that the hybrid LAES can achieve a high ne RTE between 52%and 76%,with the maximum at~5 MPa.For a given size of hybrid LAES(1 MW×8 h),the primary energy savings and avoided carbon dioxide emissions are up to 12.1 MWh and 2.3 ton,respectively.These new findings suggest,for the first time,that small-scale LAES systems could be best operated at lower charging pressures and the technologies have a great potential for applications in local decentralized micro energy networks.展开更多
基金The Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.2009112TSJ0124)
文摘The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal model of such an engine above,a mathematical model of a refitted engine is provided.The boundary of the corresponding economical zone is further demarcated,and the optimal operating curve and the operating point of the engine are analyzed.Then,the energy transforming models of the power system are established in the mode of cooling,heating and power(MCHP),the mode of heating and power(MHP)and the mode of electricity powering(MEP).The parameter matching of the power system is optimized according to the transmission ratios of the gear box in the power distribution system.The results show that,in the MCHP,the speed transmission ratio of the engine to the gear box(ies)and the speed transmission ratio of the motor to the gear box(ims)are defined as 2.9 and 1,respectively;in the MHP,when the demand load of the power system is less than the low critical load of the economical zone,the speed transmission ratio of the motor to the engine(ime)is equal to 1,and when the demand load of the power system exceeds the low critical load of the economical zone,ime equals 0.85;in the MEP,the optimal value of ims is defined as 2.5.
基金supported by the National Natural Science Foundation of China(No.51966009)the Key Research and Development Program of Gansu Province(NO.20YF8GA057).
文摘The important indications for assessing CCHP(combined cooling,heating and power)systems are their supply-demand matching characteristics between the user demand side and the energy supply side.These characteristics are primarily influenced by different building types and operating strategies.In view of the energy redundancy of the following electric load(FEL)and following thermal load(FTL)operation strategies and the energy deficiency of the following hybrid electric-heating load(FHL)operation strategy,this paper proposes an improved following balanced heat-electrical load(IFBL)operation strategy based on the following balanced heat-electrical load(FBL)operation strategy.Based on the energy utilization rate as the objective function,this paper optimizes the installed capacity of CCHP systems in different buildings and proposes an energy factor for evaluating the supply-demand matching characteristics of the system.The results show that the energy utilization rate and energy factor of the system under IFBL are optimal relative to the other operation strategies.Secondly,the hotel building has the highest energy utilization rate and the lowest energy factor;on the contrary,the office building has the lowest energy utilization rate and the highest energy factor.Finally,the analysis of supply-demand matching for different building types under multiple operating strategies shows that the hospital and hotel systems exhibit optimal supply-demand matching performance under the IFBL strategy,with values of 0.945 and 0.938,respectively;on the contrary,the office system has an optimal supply-demand matching of 0.935 under the FEL strategy.Under the FTL strategy,the systems of all three buildings exhibit poor matching performance.
文摘Between 2018 and 2020, an average of 15 TWh of energy peat was consumed in Finland. Energy peat is used in 260 boilers in Finland, which produce district heat and heat and steam for industry, as well as electricity as cogeneration (CHP) in connection with district heating and industrial heat production. Peat accounts for 3% - 5% of the energy sources used in Finland, but its importance has been greater in terms of security of supply. With current use in accordance with the 2018-2020 average, the emissions from peat are almost 6 Mt CO<sub>2</sub> per year in Finland, which is 15% of emissions from the energy sector. In this study, the technical limitations related to peat burning, economic limitations related to the availability of biomass, and socio-economic limitations related to the regional economy are reviewed. By 2040, the technical minimum use of peat will fall to 2 TWh. The techno-economical potential may be even lower, but due to socio-economic objectives, peat production will not be completely ceased. The reduction in the minimum share assumes that old peat boilers are replaced with new biomass boilers or are alternatively replaced by other forms of heat production. Based on the biomass reserves, the current use of peat can be completely replaced by forest chips, but regional challenges may occur along the coast and in southern Finland. It is unlikely that the current demand for all peat will be fully replaced by biomass when part of CHP production is replaced by heat production alone and combustion with waste heat sources.
文摘先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具备天然的热电联供特性,能够有效缓解供热期出现的弃风问题。若能在规划阶段充分考虑运行需求,进而合理地配置储能容量,则能够在解决弃风问题的前提下,最大程度对燃煤机组进行清洁替代。为此,该文提出了多热源协同互补的AA-CAES系统容量配置模型。首先本模型在能量输入端引入电锅炉预热压缩机入口空气,以增大压缩机输气系数并提高机组产热量;其次在扩展热源端,通过太阳能反射镜场收集光热,以提高系统储热水平;并在计及储能系统各模块实际运行效率约束之余,以运行总成本最小为目标,计算储能容量配置最优解。再次,分析供热时长及环境温度等因素对投资成本回收年限的影响,并计算不同情况下本模型投资成本的回收年限,得出建设本模型可盈利的硬性条件;最后,基于东北某地区供热期及非供热期典型日负荷及气象数据在IEEE-39节点系统完成算例分析,验证所提模型有效性。
基金the partial support from UK EPSRC Manifest Project under EP/N032888/1,EP/P003605/1a UK FCO Science&Innovation Network grant(Global Partnerships Fund)an IGI/IAS Global Challenges Funding(IGI/IAS ID 3041)。
文摘Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range of charging pressure(1 to 21 MPa).Our analyses show that the baseline LAES could achieve an electrical round trip efficiency(e RTE)above 60%at a high charging pressure of 19 MPa.The baseline LAES,however,produces a large amount of excess heat particularly at low charging pressures with the maximum occurred at~1 MPa.Hence,the performance of the baseline LAES,especially at low charging pressures,is underestimated by only considering electrical energy in all the previous research.The performance of the baseline LAES with excess heat is then evaluated which gives a high e RTE even at lower charging pressures;the local maximum of 62%is achieved at~4 MPa.As a result of the above,a hybrid LAES system is proposed to provide cooling,heating,hot water and power.To evaluate the performance of the hybrid LAES system,three performance indicators are considered:nominal-electrical round trip efficiency(ne RTE),primary energy savings and avoided carbon dioxide emissions.Our results show that the hybrid LAES can achieve a high ne RTE between 52%and 76%,with the maximum at~5 MPa.For a given size of hybrid LAES(1 MW×8 h),the primary energy savings and avoided carbon dioxide emissions are up to 12.1 MWh and 2.3 ton,respectively.These new findings suggest,for the first time,that small-scale LAES systems could be best operated at lower charging pressures and the technologies have a great potential for applications in local decentralized micro energy networks.