Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmen...Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmental bridge with unbonded tendons under combined loading of torsion, bending and shear. According to the experiment research, a modified skew bending model was developed to calculate the bearing capacity of segmental bridges subjected to combined bending, shear and torsion. The finite element method was used to investigate the deflection behaviors of such structure, also to check the theoretical model. The theoretical and FEM research results were compared favorably with the test results from Technical University of Braunschweig, Germany. Finally, suggestion for the design and construction of segmental bridges with external prestressing was made.展开更多
While modem prestressed techniques have improved the torsion properties of high-strength concrete (HSC) composite beams with prestressed steel (PS) boxes, no research has been reported in either the national or in...While modem prestressed techniques have improved the torsion properties of high-strength concrete (HSC) composite beams with prestressed steel (PS) boxes, no research has been reported in either the national or international literature on the an- ti-torque and composite torque properties of this type of beam. With the aim of understanding the torque properties of these beams, this paper presents results of ten comprehensive tests; three of these were based on stirrup spacings and prestressing levels as the main parameters, while the other seven were based on torsional rates. The torsion tests were conducted on the re- sults which established several key parameters, including curves of constant torsion, strain curves of steel torsion, strain distri- bution of steel beams and concrete, curves of bending-moment and mid-span deflection, as well as cross strain distribution.The prestressing impact-factor method was adopted to deduce semiempirical equations for cracking torque in such composite beams. Furthermore, this involves the use of the equation of ultimate torque based on tress-model-theory of the distortion an- gle, the calculated results show good agreement with the measured values. In summary, this paper offers theoretical analysis for future applications of HSC composite beams with PS boxes, and provides both validation of the methods employed and a reference point for on-going research on composite beams and related anti-torque studies.展开更多
An empirical approach has been developed to analyze the nonlinear response of a pile group with arbitrarily distributed piles subjected to combined lateral and torsional loading.In this approach,the concept of instant...An empirical approach has been developed to analyze the nonlinear response of a pile group with arbitrarily distributed piles subjected to combined lateral and torsional loading.In this approach,the concept of instantaneous twist center is applied to analyze the displacement relationship of pile heads and establish the static equilibrium equations of the pile cap.The horizontal interaction among the individual piles is considered through the generalized p-multiplier.The coupling effect of lateral resistance on the torsional resistance of each pile is quantified using an empirical factorβ;the lateral and torsional nonlinear responses of individual piles are modeled by p-y andτ-θcurves,respectively.The proposed approach not only captures the most significant aspect of the group effect and coupling effect in a pile group subjected to combined lateral and torsional loading,but also automatically updates p-multipliers of individual piles based on pile cap displacements.The proposed approach was verified using results of model tests on pile groups subjected to lateral loading,torsional loading,and combined lateral and torsional loading,separately.In general,the pile cap response and the transfer of applied loads in the pile groups agree well with the test results.展开更多
A series of experimental studies was carried out to investigate the influences of pretorsion on microstructure evolution, mechanical properties, and fracture appearance of pure titanium subjected to subsequent tension...A series of experimental studies was carried out to investigate the influences of pretorsion on microstructure evolution, mechanical properties, and fracture appearance of pure titanium subjected to subsequent tension deformation. An introduction of pre-torsion strain can improve the materials' mechanical properties through micro hardness evaluation. That is, the micro hardness of tensile samples with pre-torsion deformation is much higher than that of samples processed by single torsion or tension. It can be seen from the microstructure that pre-torsion deformation can be used to refine grains better and control grains' morphology by combining subsequent tension. The results indicate that the grains are refined most evidently for tensile samples with 2 turn pre-torsion deformation. Moreover, fracture analysis indicates that tensile samples with pre-torsion strain can present good comprehensive performance. In conclusion, pre-torsion deformation plays an important role in improving comprehensive performance and controlling microstructure evolution on pure titanium subjected to later tension deformation.展开更多
文摘Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmental bridge with unbonded tendons under combined loading of torsion, bending and shear. According to the experiment research, a modified skew bending model was developed to calculate the bearing capacity of segmental bridges subjected to combined bending, shear and torsion. The finite element method was used to investigate the deflection behaviors of such structure, also to check the theoretical model. The theoretical and FEM research results were compared favorably with the test results from Technical University of Braunschweig, Germany. Finally, suggestion for the design and construction of segmental bridges with external prestressing was made.
基金supported by the National Natural Science Foundation of China (Grant No. 50879048)"948" Project of the Ministry of Water Resources of China (Grant No. 201127)
文摘While modem prestressed techniques have improved the torsion properties of high-strength concrete (HSC) composite beams with prestressed steel (PS) boxes, no research has been reported in either the national or international literature on the an- ti-torque and composite torque properties of this type of beam. With the aim of understanding the torque properties of these beams, this paper presents results of ten comprehensive tests; three of these were based on stirrup spacings and prestressing levels as the main parameters, while the other seven were based on torsional rates. The torsion tests were conducted on the re- sults which established several key parameters, including curves of constant torsion, strain curves of steel torsion, strain distri- bution of steel beams and concrete, curves of bending-moment and mid-span deflection, as well as cross strain distribution.The prestressing impact-factor method was adopted to deduce semiempirical equations for cracking torque in such composite beams. Furthermore, this involves the use of the equation of ultimate torque based on tress-model-theory of the distortion an- gle, the calculated results show good agreement with the measured values. In summary, this paper offers theoretical analysis for future applications of HSC composite beams with PS boxes, and provides both validation of the methods employed and a reference point for on-going research on composite beams and related anti-torque studies.
基金Project supported by the National Natural Science Foundation of China(Nos.50809060 and 51579218)the Fundamental Research Funds for the Central Universities,China(No.2011QNA4013)。
文摘An empirical approach has been developed to analyze the nonlinear response of a pile group with arbitrarily distributed piles subjected to combined lateral and torsional loading.In this approach,the concept of instantaneous twist center is applied to analyze the displacement relationship of pile heads and establish the static equilibrium equations of the pile cap.The horizontal interaction among the individual piles is considered through the generalized p-multiplier.The coupling effect of lateral resistance on the torsional resistance of each pile is quantified using an empirical factorβ;the lateral and torsional nonlinear responses of individual piles are modeled by p-y andτ-θcurves,respectively.The proposed approach not only captures the most significant aspect of the group effect and coupling effect in a pile group subjected to combined lateral and torsional loading,but also automatically updates p-multipliers of individual piles based on pile cap displacements.The proposed approach was verified using results of model tests on pile groups subjected to lateral loading,torsional loading,and combined lateral and torsional loading,separately.In general,the pile cap response and the transfer of applied loads in the pile groups agree well with the test results.
基金supports received from the National Natural Science Foundation of China (No. 51275414)the Aeronautical Science Foundation of China (No. 2011ZE53059)+1 种基金the Research Fund of the State Key Laboratory of Solidification Processing (NWPU) of China (No. 130-QP-2015)the National College Students Innovation Experiment Program (No. 201610699287)
文摘A series of experimental studies was carried out to investigate the influences of pretorsion on microstructure evolution, mechanical properties, and fracture appearance of pure titanium subjected to subsequent tension deformation. An introduction of pre-torsion strain can improve the materials' mechanical properties through micro hardness evaluation. That is, the micro hardness of tensile samples with pre-torsion deformation is much higher than that of samples processed by single torsion or tension. It can be seen from the microstructure that pre-torsion deformation can be used to refine grains better and control grains' morphology by combining subsequent tension. The results indicate that the grains are refined most evidently for tensile samples with 2 turn pre-torsion deformation. Moreover, fracture analysis indicates that tensile samples with pre-torsion strain can present good comprehensive performance. In conclusion, pre-torsion deformation plays an important role in improving comprehensive performance and controlling microstructure evolution on pure titanium subjected to later tension deformation.