A new type fully reversible combined blade is presented, which can fully reverse airflow during the inverse ventilation by simply reversion. It is suitable for reversible axial flow fans used in tunnel and mine ventil...A new type fully reversible combined blade is presented, which can fully reverse airflow during the inverse ventilation by simply reversion. It is suitable for reversible axial flow fans used in tunnel and mine ventilation. The optimal parameters such as overlap ratio and pitch ratio are determined through cascade experiment. Experiment results also show a big promotion of maximum lift coefficient C1,max and stall attack angle a1,max compared to the existing bi-directional symmetry airfoils.展开更多
The aim of this study was to analyse air exchange and temperature distribution in a greenhouse with combined mechanical and natural ventilation and to design more efficient mechanical ventilation systems.For this purp...The aim of this study was to analyse air exchange and temperature distribution in a greenhouse with combined mechanical and natural ventilation and to design more efficient mechanical ventilation systems.For this purpose,a computational fluid dynamics(CFD)model of the greenhouse was used.Three configurations were considered:Configuration 1(mechanical ventilation and closed roof ventilators),Configurations 2 and 3(mechanical ventilation and roof ventilators open 30%and 100%,respectively).After validation,the CFD model was used to improve the design of the greenhouse mechanical ventilation system in each of the three configurations analyzed.Four greenhouse lengths,28 m,50 m,75 m and 100 m,were used in the simulations.Compared to fan ventilation only,roof ventilation improved the climate of fan-ventilated greenhouses in terms of the air exchange rate(22%)and climate uniformity because the internal air was mixed better than with mechanical ventilation only.As the greenhouse length increased,more advantages were achieved with natural ventilation compared to mechanical ventilation.For most configurations,there was a strong linear correlation between temperature gradient and greenhouse length.The greenhouse whose regression line had the steepest slope was the one with closed roof ventilators.Increasing the fan capacity produced a general reduction in temperature,but the effect was less intense for the greenhouses with open roof ventilators.Compared to box inlet ventilators,an enlarged continuous inlet in the wall opposite the fans increased overall system performance because it eliminated backflow recirculation zones,which are prone to produce high temperatures.展开更多
文摘A new type fully reversible combined blade is presented, which can fully reverse airflow during the inverse ventilation by simply reversion. It is suitable for reversible axial flow fans used in tunnel and mine ventilation. The optimal parameters such as overlap ratio and pitch ratio are determined through cascade experiment. Experiment results also show a big promotion of maximum lift coefficient C1,max and stall attack angle a1,max compared to the existing bi-directional symmetry airfoils.
基金This research work was partially financed by the EUPHOROS project,Efficient Use of inputs in Protected Horticulture,the Seventh EU Framework Programme and INIA project RTA(2008-00109-C03-01).
文摘The aim of this study was to analyse air exchange and temperature distribution in a greenhouse with combined mechanical and natural ventilation and to design more efficient mechanical ventilation systems.For this purpose,a computational fluid dynamics(CFD)model of the greenhouse was used.Three configurations were considered:Configuration 1(mechanical ventilation and closed roof ventilators),Configurations 2 and 3(mechanical ventilation and roof ventilators open 30%and 100%,respectively).After validation,the CFD model was used to improve the design of the greenhouse mechanical ventilation system in each of the three configurations analyzed.Four greenhouse lengths,28 m,50 m,75 m and 100 m,were used in the simulations.Compared to fan ventilation only,roof ventilation improved the climate of fan-ventilated greenhouses in terms of the air exchange rate(22%)and climate uniformity because the internal air was mixed better than with mechanical ventilation only.As the greenhouse length increased,more advantages were achieved with natural ventilation compared to mechanical ventilation.For most configurations,there was a strong linear correlation between temperature gradient and greenhouse length.The greenhouse whose regression line had the steepest slope was the one with closed roof ventilators.Increasing the fan capacity produced a general reduction in temperature,but the effect was less intense for the greenhouses with open roof ventilators.Compared to box inlet ventilators,an enlarged continuous inlet in the wall opposite the fans increased overall system performance because it eliminated backflow recirculation zones,which are prone to produce high temperatures.