Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits su...Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits such as lower electricity generation price. In Iran among all type of DGs, because of wide natural gas network infrastructure and several incentives that government legislated to support combined cooling, heat and power (CCHP) investors, this type of technology is more prevalent in comparison with other technologies. Between existing CCHP technologies, certain economic choices are to be taken into account. For different buildings with different load curves, suitable size and operation of CCHP should be calculated to make the project more feasible. If CCHP does not well suited for a position, then the whole energy efficiency would be plunged significantly. In this paper, a model to find the optimal size and operation of CCHP and auxiliary boiler for any users is proposed by considering an integrated view of electricity and natural gas network using GAMS software. Then this method is applying for a hospital in Tehran as a real case study. Finally, by applying COMFAR III software, useful financial parameters and sensitivity analysis are calculated.展开更多
The thermal-environment characteristics of the existing forced-convection cooling system were compared with those of the convective cooling system, which combined the radiant-floor cooling system using floor-heating p...The thermal-environment characteristics of the existing forced-convection cooling system were compared with those of the convective cooling system, which combined the radiant-floor cooling system using floor-heating panel typically applied to apartments in South Korea with the forced-convection cooling system using improved fan coil unit. The subjective warm/cool-feeling responses to the combined radiant-floor and convective cooling system in the questionnaire survey conducted among the test subjects were analyzed to establish the basic data for the combined cooling system. The results show that in the thermal-equilibrium condition, the vertical air temperature difference in the model living room is larger in the forced-convection-cooling condition. Most of the subjects feel a proper warm/cool feeling on their entire body, but they feel colder on the foot and lower body in the combined-cooling condition.展开更多
The generated power and efficiency of gas-steam combined cycle (GSCC) power plants depend on the temperature of the inlet air greatly. Based on the analysis of basic theory of inlet air cooling technologies, the appli...The generated power and efficiency of gas-steam combined cycle (GSCC) power plants depend on the temperature of the inlet air greatly. Based on the analysis of basic theory of inlet air cooling technologies, the application of evaporative cooling system and the absorption cooling system in GSCC power plants are discussed in this paper. Moreover, in China with high temperature and humidity, applied research and simulation analysis of the above two different cooling systems are conducted separately, the research results of which can provide certain reference for optimal design and economic operation of inlet air cooling system for GSCC power enterprises in China.展开更多
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po...The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.展开更多
The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a mult...The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a multi-objective optimization model based on the life cycle assessment(LCA)method for the optimal design of hybrid solar and biomass system.The life-cycle process of the poly-generation system is divided into six phases to analyze energy consumption and greenhouse gas emissions.The comprehensive performances of the hybrid system are optimized by incorporating the evaluation criteria,including environmental impact in the whole life cycle,renewable energy contribution and economic benefit.The non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)with the technique for order preference by similarity to ideal solution(TOPSIS)method is employed to search the Pareto frontier result and thereby achieve optimal performance.The developed optimization methodology is used for a case study in an industrial park.The results indicate that the best performance from the optimized hybrid system is reached with the environmental impact load reduction rate(EILRR)of 46.03%,renewable energy contribution proportion(RECP)of 92.73%and annual total cost saving rate(ATCSR)of35.75%,respectively.By comparing pollutant-eq emissions of different stages,the operation phase emits the largest pollutant followed by the phase of raw material acquisition.Overall,this study reveals that the proposed multi-objective optimization model integrated with LCA method delivers an alternative path for the design and optimization of more sustainable CCHP system.展开更多
This paper presents the improved design of a 25 MW gas turbine power plant at Omoku in the Niger Delta area of Nigeria, using combined cycle application. It entails retrofitting a steam bottoming plant to the existing...This paper presents the improved design of a 25 MW gas turbine power plant at Omoku in the Niger Delta area of Nigeria, using combined cycle application. It entails retrofitting a steam bottoming plant to the existing 25 MW gas turbine plant by incorporating a heat recovery steam generator. The focus is to improve performance as well as reduction in total emission to the environment. Direct data collection was performed from the HMI monitoring screen, log books and manufacturer’s manual. Employing the application of MATLAB, the thermodynamics equations were modeled and appropriate parameters of the various components of the steam turbine power plant were determined. The results show that the combined cycle system had a total power output of 37.9 MW, made up of 25.0 MW from the gas turbine power plant and 12.9 MW (an increase of about 51%) from the steam turbine plant, having an HRSG, condenser and feed pump capacities of 42.46 MW, 29.61 MW and 1.76 MW respectively. The condenser cooling water parameters include a mass flow of 1180.42 kg/s, inlet and outlet temperatures of 29.8°C and 35.8°C respectively. The cycle efficiency of the dry mode gas turbine was 26.6% whereas, after modification, the combined cycle power plant overall efficiency is 48.8% (about 84% increases). Hence, SIEMENS steam turbine product of MODEL: SST-150 was recommended as the steam bottoming plant. Also the work reveals that a heat flow of about 42.46 MW which was otherwise being wasted in the exhaust gas of the 25 MW gas turbine power plant could be converted to 12.9 MW of electric power, thus reducing the total emission to the environment.展开更多
Based on the analysis of air flow and heat transfer in the dry-cooling towerfor Harmon system, a combined iteration method is presented to solve the coupled heat transfer anddraft equations derived from theoretical an...Based on the analysis of air flow and heat transfer in the dry-cooling towerfor Harmon system, a combined iteration method is presented to solve the coupled heat transfer anddraft equations derived from theoretical and empirical formulas, with the size of the exchangers andthe cooling tower or the systematic parameters being determined. Taking the 686 MW unit as anexample, the present calculating results are well agreed with those of the real case, and thus themethod presented is practical and feasible for reasonable design of Harmon system.展开更多
Syngas fuel such as hydrogen and carbon monoxide generated by solar energy is a promising method to use solar energy and overcome its fluctuation effectively.This study proposes a combined cooling,heating,and power sy...Syngas fuel such as hydrogen and carbon monoxide generated by solar energy is a promising method to use solar energy and overcome its fluctuation effectively.This study proposes a combined cooling,heating,and power system using the reversible solid oxide fuel cell assisted by solar energy to produce solar fuel and then supply energy products for users during the period without solar radiation.The system runs a solar-assisted solid oxide electrolysis cell mode and a solid oxide fuel cell mode.The thermodynamic models are constructed,and the energetic and exergetic performances are analyzed.Under the design work conditions,the SOEC mode’s overall system energy and exergy efficiencies are 19.0%and 20.5%,respectively.The electrical,energy and exergy efficiencies in the SOFC mode are 51.4%,71.3%,and 45.2%,respectively.The solid oxide fuel cell accounts for 60.0%of total exergy destruction,caused by the electrochemical reactions’thermodynamic irreversibilities.The increase of operating temperature of solid oxide fuel cell from 800℃to 1050℃rises the exergy and energy efficiencies by 11.3%and 12.3%,respectively.Its pressure from 0.2 to 0.7 MPa improves electrical efficiency by 13.8%while decreasing energy and exergy efficiencies by 5.2%and 6.0%,respectively.展开更多
文摘Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits such as lower electricity generation price. In Iran among all type of DGs, because of wide natural gas network infrastructure and several incentives that government legislated to support combined cooling, heat and power (CCHP) investors, this type of technology is more prevalent in comparison with other technologies. Between existing CCHP technologies, certain economic choices are to be taken into account. For different buildings with different load curves, suitable size and operation of CCHP should be calculated to make the project more feasible. If CCHP does not well suited for a position, then the whole energy efficiency would be plunged significantly. In this paper, a model to find the optimal size and operation of CCHP and auxiliary boiler for any users is proposed by considering an integrated view of electricity and natural gas network using GAMS software. Then this method is applying for a hospital in Tehran as a real case study. Finally, by applying COMFAR III software, useful financial parameters and sensitivity analysis are calculated.
基金Project(NRF-2013RIA2A1A01014020)supported by the National Research Foundation of Korea
文摘The thermal-environment characteristics of the existing forced-convection cooling system were compared with those of the convective cooling system, which combined the radiant-floor cooling system using floor-heating panel typically applied to apartments in South Korea with the forced-convection cooling system using improved fan coil unit. The subjective warm/cool-feeling responses to the combined radiant-floor and convective cooling system in the questionnaire survey conducted among the test subjects were analyzed to establish the basic data for the combined cooling system. The results show that in the thermal-equilibrium condition, the vertical air temperature difference in the model living room is larger in the forced-convection-cooling condition. Most of the subjects feel a proper warm/cool feeling on their entire body, but they feel colder on the foot and lower body in the combined-cooling condition.
文摘The generated power and efficiency of gas-steam combined cycle (GSCC) power plants depend on the temperature of the inlet air greatly. Based on the analysis of basic theory of inlet air cooling technologies, the application of evaporative cooling system and the absorption cooling system in GSCC power plants are discussed in this paper. Moreover, in China with high temperature and humidity, applied research and simulation analysis of the above two different cooling systems are conducted separately, the research results of which can provide certain reference for optimal design and economic operation of inlet air cooling system for GSCC power enterprises in China.
基金supported by Major International(Regional)Joint Research Project of the National Natural Science Foundation of China(61320106011)National High Technology Research and Development Program of China(863 Program)(2014AA052802)National Natural Science Foundation of China(61573224)
基金This work was partially supported by the Brook Byers Institute for Sustainable Systems, the Hightower Chair, Georgia Research Alliance, and grants (083604, 1441208) from the US National Science Foundation Program for Emerging Frontiers in Research and Innovation (EFRI).
文摘The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.
基金supported by the National Natural Science Foundation of China(Grant No.51976164)。
文摘The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a multi-objective optimization model based on the life cycle assessment(LCA)method for the optimal design of hybrid solar and biomass system.The life-cycle process of the poly-generation system is divided into six phases to analyze energy consumption and greenhouse gas emissions.The comprehensive performances of the hybrid system are optimized by incorporating the evaluation criteria,including environmental impact in the whole life cycle,renewable energy contribution and economic benefit.The non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)with the technique for order preference by similarity to ideal solution(TOPSIS)method is employed to search the Pareto frontier result and thereby achieve optimal performance.The developed optimization methodology is used for a case study in an industrial park.The results indicate that the best performance from the optimized hybrid system is reached with the environmental impact load reduction rate(EILRR)of 46.03%,renewable energy contribution proportion(RECP)of 92.73%and annual total cost saving rate(ATCSR)of35.75%,respectively.By comparing pollutant-eq emissions of different stages,the operation phase emits the largest pollutant followed by the phase of raw material acquisition.Overall,this study reveals that the proposed multi-objective optimization model integrated with LCA method delivers an alternative path for the design and optimization of more sustainable CCHP system.
文摘This paper presents the improved design of a 25 MW gas turbine power plant at Omoku in the Niger Delta area of Nigeria, using combined cycle application. It entails retrofitting a steam bottoming plant to the existing 25 MW gas turbine plant by incorporating a heat recovery steam generator. The focus is to improve performance as well as reduction in total emission to the environment. Direct data collection was performed from the HMI monitoring screen, log books and manufacturer’s manual. Employing the application of MATLAB, the thermodynamics equations were modeled and appropriate parameters of the various components of the steam turbine power plant were determined. The results show that the combined cycle system had a total power output of 37.9 MW, made up of 25.0 MW from the gas turbine power plant and 12.9 MW (an increase of about 51%) from the steam turbine plant, having an HRSG, condenser and feed pump capacities of 42.46 MW, 29.61 MW and 1.76 MW respectively. The condenser cooling water parameters include a mass flow of 1180.42 kg/s, inlet and outlet temperatures of 29.8°C and 35.8°C respectively. The cycle efficiency of the dry mode gas turbine was 26.6% whereas, after modification, the combined cycle power plant overall efficiency is 48.8% (about 84% increases). Hence, SIEMENS steam turbine product of MODEL: SST-150 was recommended as the steam bottoming plant. Also the work reveals that a heat flow of about 42.46 MW which was otherwise being wasted in the exhaust gas of the 25 MW gas turbine power plant could be converted to 12.9 MW of electric power, thus reducing the total emission to the environment.
基金This project is supported by Main Project in Shanghai for the Combination of New technology and Production(No.9120902)Selected from Proceedings of 2000 the First International conference on Mechanical Engineering
文摘Based on the analysis of air flow and heat transfer in the dry-cooling towerfor Harmon system, a combined iteration method is presented to solve the coupled heat transfer anddraft equations derived from theoretical and empirical formulas, with the size of the exchangers andthe cooling tower or the systematic parameters being determined. Taking the 686 MW unit as anexample, the present calculating results are well agreed with those of the real case, and thus themethod presented is practical and feasible for reasonable design of Harmon system.
基金supported by the National Natural Science Foundation of China(Grant No.51876064 and 52090064)the Bureau of Shihezi Science&Technology(Grant No.2021ZD02)。
文摘Syngas fuel such as hydrogen and carbon monoxide generated by solar energy is a promising method to use solar energy and overcome its fluctuation effectively.This study proposes a combined cooling,heating,and power system using the reversible solid oxide fuel cell assisted by solar energy to produce solar fuel and then supply energy products for users during the period without solar radiation.The system runs a solar-assisted solid oxide electrolysis cell mode and a solid oxide fuel cell mode.The thermodynamic models are constructed,and the energetic and exergetic performances are analyzed.Under the design work conditions,the SOEC mode’s overall system energy and exergy efficiencies are 19.0%and 20.5%,respectively.The electrical,energy and exergy efficiencies in the SOFC mode are 51.4%,71.3%,and 45.2%,respectively.The solid oxide fuel cell accounts for 60.0%of total exergy destruction,caused by the electrochemical reactions’thermodynamic irreversibilities.The increase of operating temperature of solid oxide fuel cell from 800℃to 1050℃rises the exergy and energy efficiencies by 11.3%and 12.3%,respectively.Its pressure from 0.2 to 0.7 MPa improves electrical efficiency by 13.8%while decreasing energy and exergy efficiencies by 5.2%and 6.0%,respectively.