期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental Study on Tensile Properties of Steel Plate Bonded by CFRP 被引量:1
1
作者 卢亦焱 张号军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期727-732,共6页
The tensile properties of five groups of composite specimens, which consist of steel plate bonded by CFRP,were experimentally researched. The failure types, performing characteristics and failure mechanism of the comp... The tensile properties of five groups of composite specimens, which consist of steel plate bonded by CFRP,were experimentally researched. The failure types, performing characteristics and failure mechanism of the composite specimens were investigated in detail. The influence of different ratio of CFRP on bearing capacity, loading-strain curves, compound modulus, rigidity and ductility of the composite specimens was analyzed. The experimental results indicate that the composite specimen can work harmonically and the steel plate does not break in tension. Comparing with steel plate, the bearing capacity and the rigidity of the composite specimens increase and ductility decreases. The bearing capacity increases sharply with the increase in the number of layers of CFRP. With the increase in CFRP, the yield strength increases slightly and ductility decreases. The experimental researches can provide a theoretical basis for engineering application of combination strengthening. 展开更多
关键词 steel plate Carbon Fiber Reinforced Polymer (CFRP) combination strengthening tensile properties experimental study
下载PDF
Combined strengthening mechanism of solid-state bonding and mechanical interlocking in friction self-piercing riveted AA7075-T6 aluminum alloy joints 被引量:1
2
作者 Yunwu Ma Bingxin Yang +4 位作者 Shanqing Hu He Shan Peihao Geng Yongbing Li Ninshu Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第10期109-121,共13页
A recently developed friction self-piercing riveting(F-SPR)technique based on the combination of fric-tion stir processing and riveting has been reported to possess both solid-state bonding and mechanical fastening ch... A recently developed friction self-piercing riveting(F-SPR)technique based on the combination of fric-tion stir processing and riveting has been reported to possess both solid-state bonding and mechanical fastening characteristics.However,there is still a lack of quantitative understanding of the hybrid en-hancement mechanism,hindering its engineering application.To fill in this gap,the current research investigated the microstructure evolution,microhardness distribution,and miniature-tensile performance of the aluminum alloy AA7075-T6 F-SPR joints by experiments.An accurate numerical simulation model was established to quantitatively evaluate the individual contributions of microstructure,local bonding strength,and macro interlocking to the performance of the joint,which could well explain the experi-mental results.It was found that due to the friction stirring of the rivet,solid-state bonding driven by dynamic recrystallization is realized between the trapped aluminum in the rivet cavity and the bottom aluminum sheet.The solid-state bonding zone has 75%yield strength,81%ultimate tensile strength,and 106%elongation compared to the base material.This solid-state bonding enables the internal interlock-ing between the trapped aluminum and the rivet to withstand the additional load,which forms a novel dual-interlock fastening mechanism and increases the peak cross-tension force by 14.3%compared to the single-interlock joint. 展开更多
关键词 Combined strengthening Friction self-piercing riveting Miniature tensile test Solid-state joining Dual-interlocking Numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部