In order to solve the issue that the combustible objects for cased telescoped ammunition (CTA) didn't burn completely during the combustion process, the microcellular combustible objects were foamed with numerous ...In order to solve the issue that the combustible objects for cased telescoped ammunition (CTA) didn't burn completely during the combustion process, the microcellular combustible objects were foamed with numerous cells in the micron order to improve the combustion performance by the supercritical carbon dioxide (SCeCO2) foaming technology. As the cell structure determined the combustion properties of microcellular combustible objects, the solubility of SCeCO2 dissolved into the combustible objects was obtained from the gravimetric method, and scanning electron microscope (SEM) was applied to characterize the cell structure under various process conditions of solubility, foaming temperature and foaming time. SEM images indicate that the cell diameter of microcellular combustible objects is in the level of 1 mm and the cell density is about 1011 cell,cm^-3. The microcellular combustible objects fabricated by the SCeCO2 foaming technology are smooth and uniform, and the high specific surface area of cell structure can lead to the significant combustion performance of microcellular combustible object for CTA in the future.展开更多
A fractal pore structure model of combustible cartridge cases was established by virtue of the fractal geometry. Pore structure information, such as backbone fractal dimension and pore fractal dimension, of four kinds...A fractal pore structure model of combustible cartridge cases was established by virtue of the fractal geometry. Pore structure information, such as backbone fractal dimension and pore fractal dimension, of four kinds of combustible cartridge case were obtained by mercury intrusion porosimetry (MIP) . The formation mechanism of fractal pore structure of combustible cartridge was studied. The results show that the backbone fractal dimension consists of the component and influenced by the component number and size of components; the pore percolation fractal dimension reflects the pore structures of components; and the fractal dimension of pore structure is positively relative to the tensile strength of combustible cartridge case.展开更多
A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based co...A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based combustible mixture gas. In the code,Young's technique was employed to track the interface between the explosion products and air,and combustible function model was adopted to simulate ignition process. The code was employed to study explosion flow field inside and outside the duct and to obtain peak pressures in different boundary conditions and ignition positions. Numerical results suggest that during the propagation in a duct,for point initiation,the curvature of spherical wave front gradually decreases and evolves into plane wave. Due to the multiple reflections on the duct wall,multi-peak values appear on pressure-time curve,and peak pressure strongly relies on the duct boundary conditions and ignition position. When explosive wave reaches the exit of the duct,explosion products expand outward and forms shock wave in air. Multiple rarefaction waves also occur and propagate upstream along the duct to decrease the pressure in the duct. The results are in agreement with one-dimensional isentropic gas flow theory of the explosion products,and indicate that the ignition model and multi-material interface treatment method are feasible.展开更多
Foamed combustible material based on polymer bonded RDX was fabricated using CO_2 as foaming agent.The inner structures of felted and foamed combustible materials were presented by SEM. The two materials presented dif...Foamed combustible material based on polymer bonded RDX was fabricated using CO_2 as foaming agent.The inner structures of felted and foamed combustible materials were presented by SEM. The two materials presented different formulations and inner porous structures. The combustion behaviors of felted and foamed materials were investigated by closed vessel test. Simultaneously, the co-combustion behavior of combustible cartridge case with 7-perf consolidated propellants was also investigated. The results of closed vessel test is applicable to gun system which is made of the foamed combustible material as component.展开更多
One kind of combustible gas alarms based on industrial Ethernet was designed to prevent the gas leakage in industrial production sites, The alarm adopted the high performance microprocessor LPC2214 as the main chip. T...One kind of combustible gas alarms based on industrial Ethernet was designed to prevent the gas leakage in industrial production sites, The alarm adopted the high performance microprocessor LPC2214 as the main chip. The embedded operating system μC/OS-Ⅱand TCP/IP protocol stack uIP running on LPC2214 constitute a development platform of application of the combustible gas alarm, The test shows that it can automatically and continuously detect combustible gas in industrial production sites in several positions;it can give out sound-light alarm and take protective measures immediately against the gas leakage; and it can send the detected data to PC through the Ethernet interface to realize the remote detection. The designed project provides a reference to design industrial devices based on industrial Ethernet展开更多
Microcellular combustible objects for application of combustible case,caseless ammunition or combustible detonator-holding tubes are fabricated through one-step foaming process,in which supercritical CO_2 is used as f...Microcellular combustible objects for application of combustible case,caseless ammunition or combustible detonator-holding tubes are fabricated through one-step foaming process,in which supercritical CO_2 is used as foaming agent.The formulations consist of inert polymer binder and ultra fine RDX.For the inner porous structures of microcellular combustible objects,the cell sizes present a unimodal or bimodal distribution by adjusting the foaming conditions.Closed bomb test is to investigate the influence of both porous structure style and RDX content on burning behavior.The sample with bimodal distribution of cell sizes burns faster than that with unimodal distribution,and the concentration of RDX can influence the burning characteristics in a positive manner.In addition,the translation of laminar burning to convective burning is determined by burning rate versus pressure curves of samples at two different loading densities,and the resulting transition pressure is 30 MPa.Moreover,the samples with bigger sample size present higher burning rate,resulting in providing deeper convective depth.Dynamic vivacity of samples is also studied.The results show that the vivacity increases with RDX content and varies with inner structure.展开更多
Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants ...Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants increases their energy density, making them more efficient and powerful. Nevertheless, B forms oxide layers on its surface during combustion, slowing down the combustion rate and reducing rocket motor efficiency. To overcome this issue, other metal additives such as aluminum(Al), magnesium(Mg),and titanium(Ti) are revealed to be effective in boosting the combustion rate of propellants. These additives may improve the combustion rate and therefore enhance the rocket motor’s performance. The present study focused on preparing and investigating the ignition and combustion behavior of pure hydroxyl-terminated polybutadiene(HTPB)-B fuel supplemented with nano-titanium and nanomagnesium. The burn rates of HTPB-B fuel samples were evaluated on the opposed flow burner(OFB)under a gaseous oxygen oxidizer, for which the mass flux ranges from 22 kg/(m^(2)·s) to 86 kg/(m^(2)·s). The addition of Ti and Mg exhibited higher regression rates, which were attributed to the improved oxidation reaction of B due to the synergetic metal combustion effect. The possible combustion/oxidation reaction mechanism of B-Mg and B-Ti by heating the fuel samples at 900℃ and 1100℃ was also examined in a Nabertherm burnout furnace under an oxygen atmosphere. The post-combustion products were collected and further subjected to X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM) analyses to inspect the combustion behavior of B-Ti and B-Mg. It has been observed that the B oxide layer at the interface between B-Ti(B-Mg) is removed at lower temperatures, hence facilitating oxygen transfer from the surroundings to the core B. Additionally, Ti and Mg decreased the ignition delay time of B, which improved its combustion performance.展开更多
Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,whic...Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.展开更多
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i...The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.展开更多
Based on a comprehensive and systematic analysis of the temporal and spatial distribution,periodic changes,and influencing factors of forest fires in Inner Mongolia,through fixed-point observations and experiments on ...Based on a comprehensive and systematic analysis of the temporal and spatial distribution,periodic changes,and influencing factors of forest fires in Inner Mongolia,through fixed-point observations and experiments on the ground,forest combustibles are divided into the ground litter layer,ground standing litter,and living plants.The combustibles are divided into various grades according to their load,dryness and combustibility.By determining the influencing factors of each combustible grade,a forecast model of the combustibility grade of combustibles is established.The forecast model has been widely used in the mid-and long-term forecast model of fire danger grade,and the accuracy rate of the fall area forecast through back-generation fitting verification is above 88.43%.展开更多
Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combus...Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combustor.To investigate the combustion characteristics of the complex supersonic flame in the RBCC combustor,a new radiation thermometry combined with Levenberg-Marquardt(LM)algorithm and the least squares method was proposed to measure the temperature,emissivity and spectral radiative properties based on the flame emission spectrum.In-situ measurements of the flame temperature,emissivity and spectral radiative properties were carried out in the RBCC direct-connected test bench with laser-induced plasma combustion enhancement(LIPCE)and without LIPCE.The flame average temperatures at fuel global equivalence ratio(a)of 1.0b and 0.6 with LIPCE were 4.51%and 2.08%higher than those without LIPCE.The flame combustion oscillation of kerosene tended to be stable in the recirculation zone of cavity with the thermal and chemical effects of laser induced plasma.The differences of flame temperature at a=1.0b and 0.6 were 503 K and 523 K with LIPCE,which were 20.07%and42.64%lower than those without LIPCE.The flame emissivity with methane assisted ignition was 80.46%lower than that without methane assisted ignition,due to the carbon-hydrogen ratio of kerosene was higher than that of methane.The spectral emissivities at 600 nm with LIPCE were 1.25%,22.2%,and 4.22%lower than those without LIPCE at a=1.0a(with methane assisted ignition),1.0b(without methane assisted ignition)and 0.6.The effect of concentration in the emissivity was removed by normalization to analyze the flame radiative properties in the RBCC combustor chamber.The maximum differences of flame normalized emissivity were 50.91%without LIPCE and 27.53%with LIPCE.The flame radiative properties were stabilized under the thermal and chemical effects of laser induced plasma at a=0.6.展开更多
A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energ...A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energy inside Al-core and promote rapid pyrolysis of ammonium perchlorate(AP)at a lower temperature in aluminized propellants.The microstructure of Al@Ni-P-Cu demonstrates that a three-layer Ni-P-Cu shell,with the thickness of~100 nm,is uniformly supported byμAl carrier(fuel unit),which has an amorphous surface with a thickness of~2.3 nm(catalytic unit).The peak temperature of AP with the addition of Al@Ni-P-Cu(3.5%)could significantly drop to 316.2℃ at high-temperature thermal decomposition,reduced by 124.3℃,in comparison to that of pure AP with 440.5℃.It illustrated that the introduction of Al@Ni-P-Cu could weaken or even eliminate the obstacle of AP pyrolysis due to its reduction of activation energy with 118.28 kJ/mol.The laser ignition results showed that the ignition delay time of Al@Ni-P-Cu/AP mixture with 78 ms in air is shorter than that of Al@Ni-P/AP(118 ms),decreased by 33.90%.Those astonishing breakthroughs were attributed to the synergistic effects of adequate active sites on amorphous surface and oxidation exothermic reactions(7597.7 J/g)of Al@Ni-P-Cu,resulting in accelerated mass and/or heat transfer rate to catalyze AP pyrolysis and combustion.Moreover,it is believed to provide an alternative Al-based combustion catalyst for propellant designer,to promote the development the propellants toward a higher energy.展开更多
For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based ...For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios.展开更多
A hydrotalcite(layered double hydroxide, LDH) inhibitor which is suitable for the whole process of coal spontaneous combustion and a LDH inhibitor containing rare earth lanthanum elements were prepared. The inhibition...A hydrotalcite(layered double hydroxide, LDH) inhibitor which is suitable for the whole process of coal spontaneous combustion and a LDH inhibitor containing rare earth lanthanum elements were prepared. The inhibition effect and mechanism were analyzed by scanning electron microscopy(SEM),X-ray diffraction(XRD), thermal performance analysis, in-situ diffuse reflectance infrared spectroscopy and temperature-programmed experiment. The results have shown that the inhibitor containing lanthanum can play a good inhibitory role in every stage of coal oxidation. During the slow oxidation of coal samples, the inhibitor containing lanthanum ions can slow down the oxidation process of coal and increase the initial temperature of coal spontaneous combustion. At the same time, because the hydroxyl groups in LDHs are connected with-COO-groups on the coal surface through hydrogen bonds, the stability of coal is improved. With the increase of temperature, LDHs can remove interlayer water molecules and reduce the surface temperature of coal. CO release rate of coal samples decreases significantly after adding inhibitor containing lanthanum element, and the maximum inhibition rate of the inhibitor is 58.1%.展开更多
Incorporating aluminum metal-organic frameworks(Al-MOFs)as energetic additives for solid fuels presents a promising avenue for enhancing combustion performance.This study explores the potential benefits of Al-MOF(MIL-...Incorporating aluminum metal-organic frameworks(Al-MOFs)as energetic additives for solid fuels presents a promising avenue for enhancing combustion performance.This study explores the potential benefits of Al-MOF(MIL-53(Al))energetic additive on the combustion performance of hydroxyl-terminated polybutadiene(HTPB)fuel.The HTPB-MOF fuel samples were manufactured using the vacuum-casting technique,followed by a comprehensive evaluation of their ignition and combustion properties using an opposed flow burner(OFB)setup utilizing gaseous oxygen as an oxidizer.To gauge the effectiveness of Al-MOFs as fuel additives,their impact is compared with that of nano-aluminum(nAl),another traditional additive in HTPB fuel.The results indicate that the addition of 15%(mass fraction)nAl into HTPB resulted in the shortest ignition delay time(136 ms),demonstrating improved ignition performance compared to pure HTPB(273 ms).The incorporation of Al-MOF in HTPB also reduced ignition delay times to 227 ms and 189 ms,respectively.Moreover,under high oxidizer mass flux conditions(79—81 kg/(m^(2)s)),HTPB fuel with 15%nAl exhibited a substantial 83.2%increase in regression rate compared to the baseline HTPB fuel,highlighting the positive influence of nAl on combustion behavior.In contrast,HTPB-MOF with a 15%Al-MOF additive showed a 32.7%increase in regression rate compared to pure HTPB.These results suggest that HTPB-nAl outperforms HTPB-MOF in terms of regression rates,indicating a more vigorous and rapid burning behavior.展开更多
Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion fl...Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions.展开更多
In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas,“tobacco stem semi-tar inside furnace”,“tobacco stem tar inside furnace”and“tobacco stem tar out-of-furn...In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas,“tobacco stem semi-tar inside furnace”,“tobacco stem tar inside furnace”and“tobacco stem tar out-of-furnace”were subjected to thermogravimetric experiments,and the combustion characteristics and kinetic characteristics were analyzed.The result shows that“tobacco stem semi-tar inside furnace”has the highest value and“tobacco stem tar out-of-furnace”is has the lowest value on ignition characteristics,combustion characteristics and combustible stability;“tobacco stem semi-tar inside furnace”has the lowest value and“tobacco stem tar outside furnace”has the highest value on burnout characteristics;“tobacco stem tar outside furnace”has the highest value and“tobacco stem tar inside furnace”has the lowest value on integrated combustion characteristics.展开更多
This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon redu...This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon reduction.However,the corrosive effects of alkali metal compounds,sulfur(S)and chlorine(Cl)elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels.We investigate the corrosion mechanisms,as well as the transfer of Cl and alkali metal elements during this process.Comparative corrosion analyses are conducted among coal-fired boilers,pure biomass boilers and boilers with coupled combustion.Various biomass types in co-firing are studied to understand different corrosion outcomes.The main factors influencing corrosion include the physicochemical properties of biomass feedstock,furnace temperature and heating surface materials,with the chemical composition and ash content of biomass playing a dominant role.Currently,the methods used for anti-corrosion include water washing pretreatment of biomass feedstock,application of novel alloys and coatings and the development of additives to inhibit fouling,ash deposition and corrosion.Efficient inhibitors are economical and easy to produce.Additionally,biomass can be converted into biomass gasification gas,although challenges related to tar still need to be addressed.展开更多
Analyses of the characteristics and properties of biocoke fuel from several biomass wastes were carried out to determine the energy potential of the fuel.Biocoke production in this research uses heating and pressure m...Analyses of the characteristics and properties of biocoke fuel from several biomass wastes were carried out to determine the energy potential of the fuel.Biocoke production in this research uses heating and pressure methods simultaneously under constant conditions.Experimental results using thermogravimetric analysis show that biocoke empty-fruit-bunches(EFB)have a higher energy potential of 26.57 MJ/kg.Meanwhile,mangrove biocoke recorded the lowest ash content at 1.81%compared to EFB at 5.09%.The carbon content of mangrove biocoke is 58.02%,slightly higher than that of EFB,56.70%,but EFB is higher than that of other biomass.Overall,the energy content recorded in biocoke increased significantly compared to raw biomass.展开更多
文摘In order to solve the issue that the combustible objects for cased telescoped ammunition (CTA) didn't burn completely during the combustion process, the microcellular combustible objects were foamed with numerous cells in the micron order to improve the combustion performance by the supercritical carbon dioxide (SCeCO2) foaming technology. As the cell structure determined the combustion properties of microcellular combustible objects, the solubility of SCeCO2 dissolved into the combustible objects was obtained from the gravimetric method, and scanning electron microscope (SEM) was applied to characterize the cell structure under various process conditions of solubility, foaming temperature and foaming time. SEM images indicate that the cell diameter of microcellular combustible objects is in the level of 1 mm and the cell density is about 1011 cell,cm^-3. The microcellular combustible objects fabricated by the SCeCO2 foaming technology are smooth and uniform, and the high specific surface area of cell structure can lead to the significant combustion performance of microcellular combustible object for CTA in the future.
基金Sponsored by Young Fund Programs of Explosives&Propellants ( HYZ08010202-4)
文摘A fractal pore structure model of combustible cartridge cases was established by virtue of the fractal geometry. Pore structure information, such as backbone fractal dimension and pore fractal dimension, of four kinds of combustible cartridge case were obtained by mercury intrusion porosimetry (MIP) . The formation mechanism of fractal pore structure of combustible cartridge was studied. The results show that the backbone fractal dimension consists of the component and influenced by the component number and size of components; the pore percolation fractal dimension reflects the pore structures of components; and the fractal dimension of pore structure is positively relative to the tensile strength of combustible cartridge case.
基金Project(10572026) supported by the National Natural Science Foundation of China
文摘A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based combustible mixture gas. In the code,Young's technique was employed to track the interface between the explosion products and air,and combustible function model was adopted to simulate ignition process. The code was employed to study explosion flow field inside and outside the duct and to obtain peak pressures in different boundary conditions and ignition positions. Numerical results suggest that during the propagation in a duct,for point initiation,the curvature of spherical wave front gradually decreases and evolves into plane wave. Due to the multiple reflections on the duct wall,multi-peak values appear on pressure-time curve,and peak pressure strongly relies on the duct boundary conditions and ignition position. When explosive wave reaches the exit of the duct,explosion products expand outward and forms shock wave in air. Multiple rarefaction waves also occur and propagate upstream along the duct to decrease the pressure in the duct. The results are in agreement with one-dimensional isentropic gas flow theory of the explosion products,and indicate that the ignition model and multi-material interface treatment method are feasible.
文摘Foamed combustible material based on polymer bonded RDX was fabricated using CO_2 as foaming agent.The inner structures of felted and foamed combustible materials were presented by SEM. The two materials presented different formulations and inner porous structures. The combustion behaviors of felted and foamed materials were investigated by closed vessel test. Simultaneously, the co-combustion behavior of combustible cartridge case with 7-perf consolidated propellants was also investigated. The results of closed vessel test is applicable to gun system which is made of the foamed combustible material as component.
基金the National High Technology Research and Development Program of China (863 Program)(Grant No.2006AA040601)
文摘One kind of combustible gas alarms based on industrial Ethernet was designed to prevent the gas leakage in industrial production sites, The alarm adopted the high performance microprocessor LPC2214 as the main chip. The embedded operating system μC/OS-Ⅱand TCP/IP protocol stack uIP running on LPC2214 constitute a development platform of application of the combustible gas alarm, The test shows that it can automatically and continuously detect combustible gas in industrial production sites in several positions;it can give out sound-light alarm and take protective measures immediately against the gas leakage; and it can send the detected data to PC through the Ethernet interface to realize the remote detection. The designed project provides a reference to design industrial devices based on industrial Ethernet
基金funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Microcellular combustible objects for application of combustible case,caseless ammunition or combustible detonator-holding tubes are fabricated through one-step foaming process,in which supercritical CO_2 is used as foaming agent.The formulations consist of inert polymer binder and ultra fine RDX.For the inner porous structures of microcellular combustible objects,the cell sizes present a unimodal or bimodal distribution by adjusting the foaming conditions.Closed bomb test is to investigate the influence of both porous structure style and RDX content on burning behavior.The sample with bimodal distribution of cell sizes burns faster than that with unimodal distribution,and the concentration of RDX can influence the burning characteristics in a positive manner.In addition,the translation of laminar burning to convective burning is determined by burning rate versus pressure curves of samples at two different loading densities,and the resulting transition pressure is 30 MPa.Moreover,the samples with bigger sample size present higher burning rate,resulting in providing deeper convective depth.Dynamic vivacity of samples is also studied.The results show that the vivacity increases with RDX content and varies with inner structure.
基金the Hindustan Institute of Technology and Science for their support.
文摘Metal additives play an essential role in explosive and propellant formulations. Boron(B) is widely used in propellant applications owing to its high energetic content. The addition of B to explosives and propellants increases their energy density, making them more efficient and powerful. Nevertheless, B forms oxide layers on its surface during combustion, slowing down the combustion rate and reducing rocket motor efficiency. To overcome this issue, other metal additives such as aluminum(Al), magnesium(Mg),and titanium(Ti) are revealed to be effective in boosting the combustion rate of propellants. These additives may improve the combustion rate and therefore enhance the rocket motor’s performance. The present study focused on preparing and investigating the ignition and combustion behavior of pure hydroxyl-terminated polybutadiene(HTPB)-B fuel supplemented with nano-titanium and nanomagnesium. The burn rates of HTPB-B fuel samples were evaluated on the opposed flow burner(OFB)under a gaseous oxygen oxidizer, for which the mass flux ranges from 22 kg/(m^(2)·s) to 86 kg/(m^(2)·s). The addition of Ti and Mg exhibited higher regression rates, which were attributed to the improved oxidation reaction of B due to the synergetic metal combustion effect. The possible combustion/oxidation reaction mechanism of B-Mg and B-Ti by heating the fuel samples at 900℃ and 1100℃ was also examined in a Nabertherm burnout furnace under an oxygen atmosphere. The post-combustion products were collected and further subjected to X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM) analyses to inspect the combustion behavior of B-Ti and B-Mg. It has been observed that the B oxide layer at the interface between B-Ti(B-Mg) is removed at lower temperatures, hence facilitating oxygen transfer from the surroundings to the core B. Additionally, Ti and Mg decreased the ignition delay time of B, which improved its combustion performance.
基金funded by Shaanxi Provincial Key Research and Development Program of China(Grant No.2021ZDLGY11)partially supported by NSAF Project of China(Grant No.U2030202)。
文摘Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.
基金the support of the National Natural Science Foundation of China grant number 51776175。
文摘The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.
基金Supported by Scientific and Technological Project of Inner Mongolia Autonomous Region(2020GG0016).
文摘Based on a comprehensive and systematic analysis of the temporal and spatial distribution,periodic changes,and influencing factors of forest fires in Inner Mongolia,through fixed-point observations and experiments on the ground,forest combustibles are divided into the ground litter layer,ground standing litter,and living plants.The combustibles are divided into various grades according to their load,dryness and combustibility.By determining the influencing factors of each combustible grade,a forecast model of the combustibility grade of combustibles is established.The forecast model has been widely used in the mid-and long-term forecast model of fire danger grade,and the accuracy rate of the fall area forecast through back-generation fitting verification is above 88.43%.
基金supported by the National Natural Science Foundation of China (Grant Nos.52276185,52276189 and 51976057)the Fundamental Research Funds for the Central Universities (Grant No.2021MS126)+1 种基金the Natural Science Foundation of Jiangsu Province (Grant No.BK20231209)the Proof-of-Concept Project of Zhongguancun Open Laboratory (Grant No.20220981113)。
文摘Flame temperature and spectral emissivity were the important parameters characterizing the sufficient degree of fuel combustion and the particle radiative characteristics in the Rocket Based Combined Cycle(RBCC)combustor.To investigate the combustion characteristics of the complex supersonic flame in the RBCC combustor,a new radiation thermometry combined with Levenberg-Marquardt(LM)algorithm and the least squares method was proposed to measure the temperature,emissivity and spectral radiative properties based on the flame emission spectrum.In-situ measurements of the flame temperature,emissivity and spectral radiative properties were carried out in the RBCC direct-connected test bench with laser-induced plasma combustion enhancement(LIPCE)and without LIPCE.The flame average temperatures at fuel global equivalence ratio(a)of 1.0b and 0.6 with LIPCE were 4.51%and 2.08%higher than those without LIPCE.The flame combustion oscillation of kerosene tended to be stable in the recirculation zone of cavity with the thermal and chemical effects of laser induced plasma.The differences of flame temperature at a=1.0b and 0.6 were 503 K and 523 K with LIPCE,which were 20.07%and42.64%lower than those without LIPCE.The flame emissivity with methane assisted ignition was 80.46%lower than that without methane assisted ignition,due to the carbon-hydrogen ratio of kerosene was higher than that of methane.The spectral emissivities at 600 nm with LIPCE were 1.25%,22.2%,and 4.22%lower than those without LIPCE at a=1.0a(with methane assisted ignition),1.0b(without methane assisted ignition)and 0.6.The effect of concentration in the emissivity was removed by normalization to analyze the flame radiative properties in the RBCC combustor chamber.The maximum differences of flame normalized emissivity were 50.91%without LIPCE and 27.53%with LIPCE.The flame radiative properties were stabilized under the thermal and chemical effects of laser induced plasma at a=0.6.
基金supported by the National Natural Science Foundation of China,China(Grant Nos.U20B2018,U21B2086,11972087)。
文摘A novel design of micro-aluminum(μAl)powder coated with bi-/tri-component alloy layer,such as:Ni-P and Ni-P-Cu(namely,Al@Ni-P,Al@Ni-P-Cu,respectively),as combustion catalysts,were introduced to release its huge energy inside Al-core and promote rapid pyrolysis of ammonium perchlorate(AP)at a lower temperature in aluminized propellants.The microstructure of Al@Ni-P-Cu demonstrates that a three-layer Ni-P-Cu shell,with the thickness of~100 nm,is uniformly supported byμAl carrier(fuel unit),which has an amorphous surface with a thickness of~2.3 nm(catalytic unit).The peak temperature of AP with the addition of Al@Ni-P-Cu(3.5%)could significantly drop to 316.2℃ at high-temperature thermal decomposition,reduced by 124.3℃,in comparison to that of pure AP with 440.5℃.It illustrated that the introduction of Al@Ni-P-Cu could weaken or even eliminate the obstacle of AP pyrolysis due to its reduction of activation energy with 118.28 kJ/mol.The laser ignition results showed that the ignition delay time of Al@Ni-P-Cu/AP mixture with 78 ms in air is shorter than that of Al@Ni-P/AP(118 ms),decreased by 33.90%.Those astonishing breakthroughs were attributed to the synergistic effects of adequate active sites on amorphous surface and oxidation exothermic reactions(7597.7 J/g)of Al@Ni-P-Cu,resulting in accelerated mass and/or heat transfer rate to catalyze AP pyrolysis and combustion.Moreover,it is believed to provide an alternative Al-based combustion catalyst for propellant designer,to promote the development the propellants toward a higher energy.
基金the National Natural Science Foundation of China(project code:52202470)Jilin Province Natural Science Foundation(project codes:20220101205JC,20220101212JC)+2 种基金Jilin Province Specific Project of Industrial Technology Research&Development(project code:2020C025-2)2021 Interdisciplinary Integration and Innovation Project of Jilin University(project code:XJRCYB07)Free Exploration Project of Changsha Automotive Innovation Research Institute of Jilin University(project code:CAIRIZT20220202)。
文摘For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios.
基金Funded by National Natural Science Foundation of China (No.52074218)。
文摘A hydrotalcite(layered double hydroxide, LDH) inhibitor which is suitable for the whole process of coal spontaneous combustion and a LDH inhibitor containing rare earth lanthanum elements were prepared. The inhibition effect and mechanism were analyzed by scanning electron microscopy(SEM),X-ray diffraction(XRD), thermal performance analysis, in-situ diffuse reflectance infrared spectroscopy and temperature-programmed experiment. The results have shown that the inhibitor containing lanthanum can play a good inhibitory role in every stage of coal oxidation. During the slow oxidation of coal samples, the inhibitor containing lanthanum ions can slow down the oxidation process of coal and increase the initial temperature of coal spontaneous combustion. At the same time, because the hydroxyl groups in LDHs are connected with-COO-groups on the coal surface through hydrogen bonds, the stability of coal is improved. With the increase of temperature, LDHs can remove interlayer water molecules and reduce the surface temperature of coal. CO release rate of coal samples decreases significantly after adding inhibitor containing lanthanum element, and the maximum inhibition rate of the inhibitor is 58.1%.
文摘Incorporating aluminum metal-organic frameworks(Al-MOFs)as energetic additives for solid fuels presents a promising avenue for enhancing combustion performance.This study explores the potential benefits of Al-MOF(MIL-53(Al))energetic additive on the combustion performance of hydroxyl-terminated polybutadiene(HTPB)fuel.The HTPB-MOF fuel samples were manufactured using the vacuum-casting technique,followed by a comprehensive evaluation of their ignition and combustion properties using an opposed flow burner(OFB)setup utilizing gaseous oxygen as an oxidizer.To gauge the effectiveness of Al-MOFs as fuel additives,their impact is compared with that of nano-aluminum(nAl),another traditional additive in HTPB fuel.The results indicate that the addition of 15%(mass fraction)nAl into HTPB resulted in the shortest ignition delay time(136 ms),demonstrating improved ignition performance compared to pure HTPB(273 ms).The incorporation of Al-MOF in HTPB also reduced ignition delay times to 227 ms and 189 ms,respectively.Moreover,under high oxidizer mass flux conditions(79—81 kg/(m^(2)s)),HTPB fuel with 15%nAl exhibited a substantial 83.2%increase in regression rate compared to the baseline HTPB fuel,highlighting the positive influence of nAl on combustion behavior.In contrast,HTPB-MOF with a 15%Al-MOF additive showed a 32.7%increase in regression rate compared to pure HTPB.These results suggest that HTPB-nAl outperforms HTPB-MOF in terms of regression rates,indicating a more vigorous and rapid burning behavior.
基金supported by the National Natural Science Foundation of China(21978092).
文摘Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions.
基金the Financial Supported by Hunan Provincial Natural Science Foundation of China(No.2023JJ50224)2021–2022 Hunan Province Enterprise Science and Technology Commissioner Program Project(No.2021GK5046)+1 种基金Hunan Provincial Natural Science Foundation of China(No.2022JJ50013)Hunan Provincial Natural Science Foundation of China(No.2022JJ50041).
文摘In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas,“tobacco stem semi-tar inside furnace”,“tobacco stem tar inside furnace”and“tobacco stem tar out-of-furnace”were subjected to thermogravimetric experiments,and the combustion characteristics and kinetic characteristics were analyzed.The result shows that“tobacco stem semi-tar inside furnace”has the highest value and“tobacco stem tar out-of-furnace”is has the lowest value on ignition characteristics,combustion characteristics and combustible stability;“tobacco stem semi-tar inside furnace”has the lowest value and“tobacco stem tar outside furnace”has the highest value on burnout characteristics;“tobacco stem tar outside furnace”has the highest value and“tobacco stem tar inside furnace”has the lowest value on integrated combustion characteristics.
文摘This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon reduction.However,the corrosive effects of alkali metal compounds,sulfur(S)and chlorine(Cl)elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels.We investigate the corrosion mechanisms,as well as the transfer of Cl and alkali metal elements during this process.Comparative corrosion analyses are conducted among coal-fired boilers,pure biomass boilers and boilers with coupled combustion.Various biomass types in co-firing are studied to understand different corrosion outcomes.The main factors influencing corrosion include the physicochemical properties of biomass feedstock,furnace temperature and heating surface materials,with the chemical composition and ash content of biomass playing a dominant role.Currently,the methods used for anti-corrosion include water washing pretreatment of biomass feedstock,application of novel alloys and coatings and the development of additives to inhibit fouling,ash deposition and corrosion.Efficient inhibitors are economical and easy to produce.Additionally,biomass can be converted into biomass gasification gas,although challenges related to tar still need to be addressed.
基金support in the form of a research grant by Badan Pengelola Dana Perkebunan Kelapa Sawit(BPDPKS)with grant number(PRJ-374/DPKS/2022,PRJ-17/DPKS/2023Lembaga Penelitian dan Pengabdian Masyarakat(LPPM-USK)with grand number 192/UN11.2.1/PT.01.03/PNBP/2023).
文摘Analyses of the characteristics and properties of biocoke fuel from several biomass wastes were carried out to determine the energy potential of the fuel.Biocoke production in this research uses heating and pressure methods simultaneously under constant conditions.Experimental results using thermogravimetric analysis show that biocoke empty-fruit-bunches(EFB)have a higher energy potential of 26.57 MJ/kg.Meanwhile,mangrove biocoke recorded the lowest ash content at 1.81%compared to EFB at 5.09%.The carbon content of mangrove biocoke is 58.02%,slightly higher than that of EFB,56.70%,but EFB is higher than that of other biomass.Overall,the energy content recorded in biocoke increased significantly compared to raw biomass.