The cleanliness of gasoline is related to its components and properties.All commercial gasoline builds up deposits on the engine's injector,intake valve and combustion chamber,which can significantly lower the eng...The cleanliness of gasoline is related to its components and properties.All commercial gasoline builds up deposits on the engine's injector,intake valve and combustion chamber,which can significantly lower the engine performance and influence exhaust gas emissions.In this study,the intake valve deposits (IVD) and combustion chamber deposits (CCD) produced from combustion of fuel containing 21 v%—42 v% of aromatics and 8 v%—31 v% of olefins have been studied using Ford engine tests,and the characteristics of deposits were studied by IR spectroscopy,TGA and elemental analysis instrument.The test results have shown that deposit formation depends on the fuel composition,especially the aromatic content in the fuel.It is also observed that there are differences in the values of IVD and CCD measured by IR spectrometry and elemental analyses.展开更多
It is of significance to understand the chemical content of carbon deposits in the large-scale two-stroke(LSTS) marine diesel engine because of adverse effect on the engine performance, oil consumption and emissions. ...It is of significance to understand the chemical content of carbon deposits in the large-scale two-stroke(LSTS) marine diesel engine because of adverse effect on the engine performance, oil consumption and emissions. In this work, two different combustion chamber deposits in an LSTS marine diesel engine were studied using thermogravimetry analysis(TGA), elemental analysis(EA) and synchrotron X-ray fluorescence(SXRF). One was on the piston top and the other on the piston land, termed PTCD and PLCD, respectively. For the PTCD sample, the 97% residue in the TGA and 1.4% carbon content in the EA indicated the main compositions of PTCD were metal salts or oxides and ashes, significantly different from the previous findings of the highest carbon content in deposits from the small four stroke engines. The different chemical content between PTCD and PLCD implied higher thermal load in the LSTS marine diesel engine led to a nearly complete thermal decomposition of PTCD. The higher calcium content in PTCD and PLCD indicated the additives of cylinder oil should be the main source of metal content of PTCD and PLCD. Calcium distribution in the SXRF results was indicative of the potential layered structure in PTCD and PLCD. In addition, the appearance of iron on the surface against the piston in PTCD and PLCD indicated iron oxides formation between carbon deposit and piston materials.展开更多
基金the PetroChina Corporation Research and Development Project (06-03B-01-01) for financial support
文摘The cleanliness of gasoline is related to its components and properties.All commercial gasoline builds up deposits on the engine's injector,intake valve and combustion chamber,which can significantly lower the engine performance and influence exhaust gas emissions.In this study,the intake valve deposits (IVD) and combustion chamber deposits (CCD) produced from combustion of fuel containing 21 v%—42 v% of aromatics and 8 v%—31 v% of olefins have been studied using Ford engine tests,and the characteristics of deposits were studied by IR spectroscopy,TGA and elemental analysis instrument.The test results have shown that deposit formation depends on the fuel composition,especially the aromatic content in the fuel.It is also observed that there are differences in the values of IVD and CCD measured by IR spectrometry and elemental analyses.
基金supported by China Postdoctoral Science Foundation(Grant No.2013M541571)National Natural Science Foundation of China(Grant No.11275257)
文摘It is of significance to understand the chemical content of carbon deposits in the large-scale two-stroke(LSTS) marine diesel engine because of adverse effect on the engine performance, oil consumption and emissions. In this work, two different combustion chamber deposits in an LSTS marine diesel engine were studied using thermogravimetry analysis(TGA), elemental analysis(EA) and synchrotron X-ray fluorescence(SXRF). One was on the piston top and the other on the piston land, termed PTCD and PLCD, respectively. For the PTCD sample, the 97% residue in the TGA and 1.4% carbon content in the EA indicated the main compositions of PTCD were metal salts or oxides and ashes, significantly different from the previous findings of the highest carbon content in deposits from the small four stroke engines. The different chemical content between PTCD and PLCD implied higher thermal load in the LSTS marine diesel engine led to a nearly complete thermal decomposition of PTCD. The higher calcium content in PTCD and PLCD indicated the additives of cylinder oil should be the main source of metal content of PTCD and PLCD. Calcium distribution in the SXRF results was indicative of the potential layered structure in PTCD and PLCD. In addition, the appearance of iron on the surface against the piston in PTCD and PLCD indicated iron oxides formation between carbon deposit and piston materials.