The Ti-35V-15Cr-0.05C (wt% is a new nonburning titanium alloy. The test for alloy combustibility was carried out by using CO2 laser. A 430 watt and 6mm diameter laser spot impinges directly on the sample within normal...The Ti-35V-15Cr-0.05C (wt% is a new nonburning titanium alloy. The test for alloy combustibility was carried out by using CO2 laser. A 430 watt and 6mm diameter laser spot impinges directly on the sample within normal atmospheric pressure and temperature. The results show that the ignition time of the nonburning titanium alloy is the longest in the eight examined titanium alloys, and is 3.5 times that of TC4 alloy. The ignition tempeerature of the nonburning alloy is 2991° C, and is higher than that of TC4 alloy by 1976°C. On the condition of high tempeerature and rich oxygen,the surface of alloy forms a melting layer which plays roles of oxygen insulation, heat insulation and burning products insulation. This is the mechanism of combustion resistance.展开更多
Hydrogen storage properties of LaN4.25Al0.75 alloy were experimentally investigated by XRD, PC isotherm curves, hydrogen absorption kinetics curves, XPS and its particle diameter. The structure of unit cell of LaNi4.2...Hydrogen storage properties of LaN4.25Al0.75 alloy were experimentally investigated by XRD, PC isotherm curves, hydrogen absorption kinetics curves, XPS and its particle diameter. The structure of unit cell of LaNi4.25Al0.75 alloy was deduced. The relationship between its structure and hydrogen storage performance of LaNi4.25Al0.75 alloy was analyzed. The results show that LaNi4.25Al0.75 alloy has rapid hydrogen absorption rate and good resistance to combustibility. It is also found that the function of the hydrogen absorption plateau pressure and temperature is ln peq=-4 820/T+12.46, and the hydrogen absorption rate of the alloy decreases with increasing the temperature.展开更多
文摘The Ti-35V-15Cr-0.05C (wt% is a new nonburning titanium alloy. The test for alloy combustibility was carried out by using CO2 laser. A 430 watt and 6mm diameter laser spot impinges directly on the sample within normal atmospheric pressure and temperature. The results show that the ignition time of the nonburning titanium alloy is the longest in the eight examined titanium alloys, and is 3.5 times that of TC4 alloy. The ignition tempeerature of the nonburning alloy is 2991° C, and is higher than that of TC4 alloy by 1976°C. On the condition of high tempeerature and rich oxygen,the surface of alloy forms a melting layer which plays roles of oxygen insulation, heat insulation and burning products insulation. This is the mechanism of combustion resistance.
基金Project (50276063) supported by the National Natural Science Foundation of China
文摘Hydrogen storage properties of LaN4.25Al0.75 alloy were experimentally investigated by XRD, PC isotherm curves, hydrogen absorption kinetics curves, XPS and its particle diameter. The structure of unit cell of LaNi4.25Al0.75 alloy was deduced. The relationship between its structure and hydrogen storage performance of LaNi4.25Al0.75 alloy was analyzed. The results show that LaNi4.25Al0.75 alloy has rapid hydrogen absorption rate and good resistance to combustibility. It is also found that the function of the hydrogen absorption plateau pressure and temperature is ln peq=-4 820/T+12.46, and the hydrogen absorption rate of the alloy decreases with increasing the temperature.