This paper focuses on climate comfort degree evaluated from relationships between spatial characteristics and behaviors of a winter city.It is demonstrated that the influences of climatic factors on human comfort are ...This paper focuses on climate comfort degree evaluated from relationships between spatial characteristics and behaviors of a winter city.It is demonstrated that the influences of climatic factors on human comfort are remarkably different for different spatial characteristics and functions of the sites.An evaluation method of climatic comfort is propsed,in which attaining comfort is an adaptation process,and the dynamic changes in the process are according to the user’s subjective tendency to the variations of the spatial characteristics and functions of the space.The evaluation criteria are based on both physical and psychological hierarchy needs of a person,which include the spatial form for microclimatic conditions as well as the spatial social-economic characteristics of a site.To improve the local environment of a winter city by planning measurements,the Harbin Central Pedestrian Street is taken as an example in the application of the evaluation method,and different planning optimizing strategies are proposed accordingly.The results show that the pattern of climate comfort is characterized by reflecting the socialeconomic value and individual behavior characteristics.展开更多
Few study gives guidance to design weighting filters according to the frequency weighting factors,and the additional evaluation method of automotive ride comfort is not made good use of in some countries.Based on the ...Few study gives guidance to design weighting filters according to the frequency weighting factors,and the additional evaluation method of automotive ride comfort is not made good use of in some countries.Based on the regularities of the weighting factors,a method is proposed and the vertical and horizontal weighting filters are developed.The whole frequency range is divided several times into two parts with respective regularity.For each division,a parallel filter constituted by a low-and a high-pass filter with the same cutoff frequency and the quality factor is utilized to achieve section factors.The cascading of these parallel filters obtains entire factors.These filters own a high order.But,low order filters are preferred in some applications.The bilinear transformation method and the least P-norm optimal infinite impulse response(IIR) filter design method are employed to develop low order filters to approximate the weightings in the standard.In addition,with the window method,the linear phase finite impulse response(FIR) filter is designed to keep the signal from distorting and to obtain the staircase weighting.For the same case,the traditional method produces 0.330 7 m · s^–2 weighted root mean square(r.m.s.) acceleration and the filtering method gives 0.311 9 m · s^–2 r.m.s.The fourth order filter for approximation of vertical weighting obtains 0.313 9 m · s^–2 r.m.s.Crest factors of the acceleration signal weighted by the weighting filter and the fourth order filter are 3.002 7 and 3.011 1,respectively.This paper proposes several methods to design frequency weighting filters for automotive ride comfort evaluation,and these developed weighting filters are effective.展开更多
The aim of this study is to evaluate the comfort and optimize the position parameters of steering wheel.Taking the H point of driver as the reference point,three position parameters of steering wheel were determined,w...The aim of this study is to evaluate the comfort and optimize the position parameters of steering wheel.Taking the H point of driver as the reference point,three position parameters of steering wheel were determined,which were used as experimental factors.A comprehensive evaluation index system of the comfort was established.The comfort range and optimal levels of three parameters were determined by a single factor test,based on which a response surface optimization and validation test was carried out.The optimization and validation test results show that the expected comprehensive score of the comfort is 0.864,and the average relative error between the predicted and the measured value is 4.18%,indicating that the optimization results are reliable.The findings can provide reference for the comfort optimization design of steering wheel in agricultural devices.展开更多
基金Funded by the National Natural Science Foundation of China(Grant No.51278140)the New-Century Training Program Foundation for Talents from the Ministry of Education of China(Grant No.NCET-11-0803)
文摘This paper focuses on climate comfort degree evaluated from relationships between spatial characteristics and behaviors of a winter city.It is demonstrated that the influences of climatic factors on human comfort are remarkably different for different spatial characteristics and functions of the sites.An evaluation method of climatic comfort is propsed,in which attaining comfort is an adaptation process,and the dynamic changes in the process are according to the user’s subjective tendency to the variations of the spatial characteristics and functions of the space.The evaluation criteria are based on both physical and psychological hierarchy needs of a person,which include the spatial form for microclimatic conditions as well as the spatial social-economic characteristics of a site.To improve the local environment of a winter city by planning measurements,the Harbin Central Pedestrian Street is taken as an example in the application of the evaluation method,and different planning optimizing strategies are proposed accordingly.The results show that the pattern of climate comfort is characterized by reflecting the socialeconomic value and individual behavior characteristics.
文摘Few study gives guidance to design weighting filters according to the frequency weighting factors,and the additional evaluation method of automotive ride comfort is not made good use of in some countries.Based on the regularities of the weighting factors,a method is proposed and the vertical and horizontal weighting filters are developed.The whole frequency range is divided several times into two parts with respective regularity.For each division,a parallel filter constituted by a low-and a high-pass filter with the same cutoff frequency and the quality factor is utilized to achieve section factors.The cascading of these parallel filters obtains entire factors.These filters own a high order.But,low order filters are preferred in some applications.The bilinear transformation method and the least P-norm optimal infinite impulse response(IIR) filter design method are employed to develop low order filters to approximate the weightings in the standard.In addition,with the window method,the linear phase finite impulse response(FIR) filter is designed to keep the signal from distorting and to obtain the staircase weighting.For the same case,the traditional method produces 0.330 7 m · s^–2 weighted root mean square(r.m.s.) acceleration and the filtering method gives 0.311 9 m · s^–2 r.m.s.The fourth order filter for approximation of vertical weighting obtains 0.313 9 m · s^–2 r.m.s.Crest factors of the acceleration signal weighted by the weighting filter and the fourth order filter are 3.002 7 and 3.011 1,respectively.This paper proposes several methods to design frequency weighting filters for automotive ride comfort evaluation,and these developed weighting filters are effective.
基金This study was supported by the National Natural Science Foundation of China(51875230)the Fundamental Research Funds for the Central Universities(2662018PY038)the Program for the Outstanding Young and Middle-aged Science and Technology Innovation Team in the Higher Education Institutions of Hubei(T201934).
文摘The aim of this study is to evaluate the comfort and optimize the position parameters of steering wheel.Taking the H point of driver as the reference point,three position parameters of steering wheel were determined,which were used as experimental factors.A comprehensive evaluation index system of the comfort was established.The comfort range and optimal levels of three parameters were determined by a single factor test,based on which a response surface optimization and validation test was carried out.The optimization and validation test results show that the expected comprehensive score of the comfort is 0.864,and the average relative error between the predicted and the measured value is 4.18%,indicating that the optimization results are reliable.The findings can provide reference for the comfort optimization design of steering wheel in agricultural devices.